APPENDIX B – LOCAL CALIBRATION RESULTS

Table of Contents

APPENDIX	B – LOCAL CALIBRATION RESULTS	1
B.1 Flexi	ble Pavement Performance Prediction Models	21
B .1.1	Fatigue Cracking Model – Bottom-up	
B.1.2	Fatigue Cracking Model – Top-down	
B.1.3	Rutting Model	74
B.1.4	Transverse Cracking Model	
B.1.5	Pavement Roughness (IRI)	
B.2 Rigio	Pavement Performance Prediction Models	
B.2.1	Transverse cracking	
B.2.2	Faulting	296
B.2.3	Pavement Roughness (IRI)	
B.3 Valio	lation	
B.3.1	Fatigue cracking model – Bottom-up	
B.3.2	Fatigue cracking model – Top-down	352
B.3.3	Rutting model	358
B.3.4	Flexible IRI model	
B.3.5	Transverse cracking model	
B.3.6	Rigid IRI model	384
B.4 Use of	of local calibration coefficients	
B.4.1	Flexible	392
B.4.2	Rigid	

List of Tables

Table B-1 Option 1a local calibration results – no sampling	21
Table B-2 Option 1a global and local alligator cracking model reliability - no sampling	22
Table B-3 Option 1a local calibration results – split sampling	23
Table B-4 Option 1a global and local alligator cracking model reliability - split sampling	25
Table B-5 Option 1a local calibration results – repeated split sampling	26
Table B-6 Option 1a global and local alligator cracking model reliability – repeated split	
sampling	28
sampling Table B-7 Option 1a local calibration results – bootstrapping	28 29
sampling Table B-7 Option 1a local calibration results – bootstrapping Table B-8 Option 1a global and local alligator cracking model reliability – bootstrapping	28 29 31
sampling Table B-7 Option 1a local calibration results – bootstrapping Table B-8 Option 1a global and local alligator cracking model reliability – bootstrapping Table B-9 Option 1a local calibration results – no sampling	28 29 31 32
sampling Table B-7 Option 1a local calibration results – bootstrapping Table B-8 Option 1a global and local alligator cracking model reliability – bootstrapping Table B-9 Option 1a local calibration results – no sampling Table B-10 Option 1b global and local alligator cracking model reliability – no sampling	28 29 31 32 33

Table B-12 Option 1b global and local alligator cracking model reliability – split sampling 36 Table B-14 Option 1b global and local alligator cracking model reliability – repeated split Table B-15 Option 1b local calibration results – bootstrapping 40 Table B-16 Option 1b global and local alligator cracking model reliability – bootstrapping 42 Table B-18 Option 1 global and local alligator cracking model reliability – no sampling 44 Table B-20 Option 1 global and local alligator cracking model reliability – split sampling. 47 Table B-22 Option 1 global and local alligator cracking model reliability – repeated split Table B-23 Option 1 local calibration results – bootstrapping 51 Table B-24 Option 1 global and local alligator cracking model reliability – bootstrapping .. 53 Table B-26 Option 2 global and local alligator cracking model reliability – no sampling 55

 Table B-27 Option 2 local calibration results – split sampling
 56

 Table B-28 Option 2 global and local alligator cracking model reliability – split sampling. 57 Table B-30 Option 2 global and local alligator cracking model reliability – repeated split

 Table B-31 Option 2 local calibration results – bootstrapping
 61

 Table B-32 Option 2 global and local alligator cracking model reliability – bootstrapping .. 63 Table B-34 Option 4 global and local alligator cracking model reliability – no sampling 65

 Table B-35 Option 4 local calibration results – split sampling
 66

 Table B-36 Option 4 global and local alligator cracking model reliability – split sampling.. 67

 Table B-37 Option 4 local calibration results – repeated split sampling
 68

 Table B-38 Option 4 global and local alligator cracking model reliability – repeated split

 Table B-39 Option 4 local calibration results – bootstrapping
 71

 Table B-40 Option 4 global and local alligator cracking model reliability – bootstrapping .. 73 Table B-52 Option 1: Method 1 – Local model validation SEE and bias – split sampling.... 80 Table B-53 Option 1: Method 1 – Global model SEE and bias – repeated split sampling 86 Table B-54 Option 1: Method 1 – Local model SEE and bias – repeated split sampling 86

Table B-55 Option 1: Method 1 – Local model validation SEE and bias – repeated split Table B-63 Option 1: Method 2 – Global model goodness of fit – split sampling 101 Table B-64 Option 1: Method 2 – Global model *p*-values - split sampling 101 Table B-65 Option 1: Method 2 – Local model goodness of fit– split sampling 101 Table B-67 Option 1: Method 2 – Local model *p*-values – split sampling...... 101 Table B-68 Option 1: Method 2 – Local model validation p-values – split sampling...... 101 Table B-69 Option 1: Method 2 – Local model validation SEE and bias – split sampling.. 102 Table B-70 Option 1: Method 2 – Global model SEE and bias – repeated split sampling ... 108 Table B-71 Option 1: Method 2 – Local model SEE and bias – repeated split sampling 108 Table B-72 Option 1: Method 2 – Local model validation SEE and bias – repeated split Table B-73 Option 1: Method 2 – Global model SEE and bias – bootstrapping 115 Table B-74 Option 1: Method 2 – Local model SEE and bias – bootstrapping 115 Table B-75 Option 2: Method 1 – Global model goodness of fit – no sampling 120 Table B-77 Option 2: Method 1 – Local model goodness of fit– no sampling 120 Table B-80 Option 2: Method 1 – Global model goodness of fit – split sampling 125 Table B-81 Option 2: Method 1 – Global model *p*-values - split sampling 125 Table B-82 Option 2: Method 1 – Local model goodness of fit– split sampling 125 Table B-84 Option 2: Method 1 – Local model *p*-values – split sampling...... 125 Table B-85 Option 2: Method 1 – Local model validation p-values – split sampling...... 125 Table B-86 Option 2: Method 1 – Local model validation SEE and bias – split sampling. 126 Table B-87 Option 2: Method 1 – Global model SEE and bias – repeated split sampling .. 132 Table B-88 Option 2: Method 1 – Local model SEE and bias – repeated split sampling 132 Table B-89 Option 2: Method 1 – Local model validation SEE and bias – repeated split Table B-92 Option 2: Method 2 – Global model goodness of fit – no sampling 142 Table B-93 Option 2: Method 2 – Global model *p*-values 142 Table B-94 Option 2: Method 2 – Local model goodness of fit– no sampling 142 Table B-95 Option 2: Method 2 – Local model p-values– no sampling 142 Table B-97 Option 2: Method 2 – Global model goodness of fit – split sampling 147 Table B-99 Option 2: Method 2 – Local model goodness of fit-split sampling 147

Table B-102 Option 2: Method 2 – Local model validation p-values – split sampling...... 147 Table B-103 Option 2: Method 2 – Local model validation SEE and bias – split sampling 148 Table B-104 Option 2: Method 2 – Global model SEE and bias – repeated split sampling 154 Table B-105 Option 2: Method 2 – Local model SEE and bias – repeated split sampling .. 154 Table B-106 Option 2: Method 2 – Local model validation SEE and bias – repeated split Table B-108 Option 2: Method 2 – Local model SEE and bias – bootstrapping 160 Table B-109 Option 4: Method 1 – Global model goodness of fit – no sampling 165 Table B-114 Option 4: Method 1 – Global model goodness of fit – split sampling...... 170 Table B-116 Option 4: Method 1 – Local model goodness of fit– split sampling 170 Table B-119 Option 4: Method 1 – Local model validation p-values – split sampling...... 170 Table B-120 Option 4: Method 1 – Local model validation SEE and bias – split sampling 171 Table B-121 Option 4: Method 1 – Global model SEE and bias – repeated split sampling 177 Table B-122 Option 4: Method 1 – Local model SEE and bias – repeated split sampling .. 177 Table B-123 Option 4: Method 1 – Local model validation SEE and bias – repeated split Table B-133 Option 4: Method 2 – Local model goodness of fit– split sampling 192 Table B-135 Option 4: Method 2 – Local model *p*-values – split sampling...... 192 Table B-136 Option 4: Method 2 – Local model validation p-values – split sampling...... 192 Table B-137 Option 4: Method 2 – Local model validation SEE and bias – split sampling 193 Table B-138 Option 4: Method 2 – Global model SEE and bias – repeated split sampling 199 Table B-139 Option 4: Method 2 – Local model SEE and bias – repeated split sampling .. 199 Table B-140 Option 4: Method 2 – Local model validation SEE and bias – repeated split Table B-141 Option 4: Method 2 – Global model SEE and bias – bootstrapping...... 205 Table B-142 Option 4: Method 2 – Local model SEE and bias – bootstrapping 205

 Table B-143 Level 1 Option 1 thermal cracking results
 209

 Table B-144 Level 1 Option 1 reliability equation
 215

Table P 145 Level 1 Option 2 thermal grading results	215
Table D-145 Level 1 Option 2 meliability equation	
Table B-146 Level 1 Option 2 reliability equation	
Table B-147 Level 3 Option 1 thermal cracking results	
Table B-148 Level 3 Option 1 reliability equation	
Table B-149 Level 3 Option 2 thermal cracking results	
Table B-150 Level 3 Option 2 reliability equation	
Table B-151 Level 3 Option 4 thermal cracking results	
Table B-152 Level 3 Option 4 reliability equation	
Table B-153 Option 1 IRI local calibration results – no sampling	
Table B-154 Option 1 IRI local calibration results – split sampling	
Table B-155 Option 1 IRI local calibration results – repeated split sampling	
Table B-156 Option 1 IRI local calibration results – bootstrapping	
Table B-157 Option 2 IRI local calibration results – no sampling	240
Table B-158 Option 2 IRI local calibration results – split sampling	
Table B-159 Option 2 IRI local calibration results – repeated split sampling	
Table B-160 Option 2 IRI local calibration results – bootstrapping	
Table B-161 Option 4 IRI local calibration results – no sampling	250
Table B-162 Option 4 IRI local calibration results – split sampling	252
Table B-163 Option 4 IRI local calibration results – repeated split sampling	
Table B-164 Option 4 IRI local calibration results – bootstrapping	
Table B-165 Option 1 transverse cracking local calibration results – no sampling	
Table B-166 Option 1 transverse cracking local calibration results – split sampling	
Table B-167 Option 1 transverse cracking local calibration results – repeated split sa	ampling
Table B-168 Option 1 transverse cracking local calibration results – bootstrapping	
Table B-169 Option 2 transverse cracking local calibration results – no sampling	269
Table B-170 Option 2 transverse cracking local calibration results – split sampling	271
Table B-171 Option 2 transverse cracking local calibration results – repeated split sampling in	amnling
Tuolo D 171 Option 2 duils foise chucking focul cultoration results - repeated spire se	273
Table B-172 Option 2 transverse cracking local calibration results – bootstrapping	275
Table B-172 Option 2 transverse cracking local calibration results – no sampling	
Table B 174 Option 3 transverse cracking local calibration results – no sampling	280
Table B-174 Option 3 transverse cracking local calibration results – spin sampling	mpling
Table B-175 Option 5 transverse cracking local canoration results – repeatedspirt sa	
Table P 176 Option 2 transverse grading local solibration regults beststranning	
Table B-170 Option 5 transverse cracking local calibration results – bootstrapping	
Table B-177 Option 4 transverse cracking local calibration results – no sampling	
Table B-1/8 Option 4 transverse cracking local calibration results – split sampling	
Table B-1/9 Option 4 transverse cracking local calibration results – repeated split sa	ampling
Table B-180 Option 4 transverse cracking local calibration results – bootstrapping	
Table B-181 Option 1 faulting model local calibration results	
Table B-182 Option 2 faulting model local calibration results	
Table B-183 Option 3 faulting model local calibration results	
Table B-184 Option 4 faulting model local calibration results	309
Table B-185 Option 1 IRI local calibration results – no sampling	313
Table B-186 Option 1 IRI local calibration results – split sampling	
Table B-187 Option 1 IRI local calibration results – repeated split sampling	317
Table B-188 Option 1 IRI local calibration results – bootstrapping	321

Table B-189 Option 2 IRI local calibration results – no sampling	322
Table B-190 Option 2 IRI local calibration results – split sampling	324
Table B-191 Option 2 IRI local calibration results – repeated split sampling	326
Table B-192 Option 2 IRI local calibration results – bootstrapping	329
Table B-193 Option 3 IRI local calibration results – no sampling	330
Table B-194 Option 3 IRI local calibration results – split sampling	332
Table B-195 Option 3 IRI local calibration results – repeated split sampling	334
Table B-196 Option 1 IRI local calibration results – bootstrapping	338
Table B-197 Option 4 IRI local calibration results – no sampling	339
Table B-198 Option 4 IRI local calibration results – split sampling	341
Table B-199 Option 4 IRI local calibration results – repeated split sampling	343
Table B-200 Option 4 IRI local calibration results – bootstrapping	346
Table B-201 Option 1a alligator cracking model validation	348
Table B-202: Option 1a hypothesis test results	348
Table B-203 Option 1b alligator cracking model validation	350
Table B-204: Option 1b hypothesis test results	350
Table B-205 Option 1 longitudinal cracking model validation	352
Table B-206: Option 1 hypothesis test results	352
Table B-207 Option 2 longitudinal cracking model validation	354
Table B-208: Option 2 hypothesis test results	354
Table B-209 Option 4 longitudinal cracking model validation	356
Table B-210: Option 4 hypothesis test results	356
Table B-211 Option 1 Method 1 rutting model validation	358
Table B-212 Option 1 Method 1 rutting model validation hypothesis test results	358
Table B-213 Option 1 Method 2 rutting model validation results	360
Table B-214 Option 1 Method 2 rutting model validation hypothesis test results	360
Table B-215 Option 2 Method 1 rutting model validation results	362
Table B-216 Option 2 Method 1 rutting model validation hypothesis test results	362
Table B-217 Option 2 Method 2 rutting model validation results	364
Table B-218 Option 2 Method 2 rutting model validation hypothesis test results	364
Table B-219 Option 4 Method 1 rutting model validation results	366
Table B-220 Option 4 Method 1 rutting model validation hypothesis test results	366
Table B-221 Option 4 Method 2 rutting model validation results	368
Table B-222 Option 4 Method 2 rutting model validation hypothesis test results	368
Table B-223 Option 1 IRI model validation results	370
Table B-224 Option 1 IRI model validation hypothesis test results	370
Table B-225 Option 2 IRI model validation results	372
Table B-226 Option 2 IRI model validation hypothesis test results	372
Table B-227 Option 4 IRI model validation results	374
Table B-228 Option 4 IRI model validation hypothesis test results	374
Table B-229 Option 1 transverse cracking model validation	376
Table B-230: Option 1 hypothesis test results	376
Table B-231 Option 2 transverse cracking model validation	378
Table B-232: Option 2 hypothesis test results	378
Table B-233 Option 3 transverse cracking model validation	380
Table B-234: Option 3 hypothesis test results	380
Table B-235 Option 4 transverse cracking model validation	382
Table B-236: Option 4 hypothesis test results	382

Table B-237 Option 1 IRI model validation results	
Table B-238 Option 1 IRI model validation hypothesis test results	
Table B-239 Option 2 IRI model validation results	
Table B-240 Option 2 IRI model validation hypothesis test results	
Table B-241 Option 3 IRI model validation results	
Table B-242 Option 3 IRI model validation hypothesis test results	
Table B-243 Option 4 IRI model validation results	
Table B-244 Option 4 IRI model validation hypothesis test results	

List of Figures

Figure B-1 Option 1a measured versus predicted fatigue cracking – no sampling	21
Figure B-2 Option 1a local calibration results - no sampling	22
Figure B-3 Option 1a local calibration residual plots - no sampling	22
Figure B-4 Option 1a fitted reliability model after local calibration –no sampling	23
Figure B-5 Option 1a local calibration results - split sampling	24
Figure B-6 Option 1a local calibration residual plots - split sampling	25
Figure B-7 Option 1a fitted reliability model after local calibration – split sampling	26
Figure B-8 Option 1a repeated split sampling frequency distributions - calibration	27
Figure B-9 Option 1a repeated split sampling frequency distributions - validation	27
Figure B-10 Option 1a local calibration residual plots – repeated split sampling	28
Figure B-11 Option 1a fitted reliability model after local calibration - repeated split sa	mpling
Figure B-12 Option 1a bootstrapping frequency distributions	30
Figure B-13 Option 1a local calibration residual plots – bootstrapping	30
Figure B-14 Option 1a fitted reliability model after local calibration – bootstrapping	31
Figure B-15 Option 1b measured versus predicted fatigue cracking – no sampling	32
Figure B-16 Option 1b local calibration results – no sampling	33
Figure B-17 Option 1b local calibration residual plots – no sampling	33
Figure B-18 Option 1b fitted reliability model after local calibration – no sampling	34
Figure B-19 Option 1b local calibration results - split sampling	35
Figure B-20 Option 1b local calibration residual plots - split sampling	36
Figure B-21 Option 1b fitted reliability model after local calibration – split sampling	37
Figure B-22 Option 1b repeated split sampling frequency distributions – calibration	38
Figure B-23 Option 1b repeated split sampling frequency distributions – validation	
Figure B-24 Option 1b local calibration residual plots – repeated split sampling	
Figure B-25 Option 1b fitted reliability model after local calibration – repeated split sa	mpling
	40
Figure B-26 Option 1b bootstrapping frequency distributions	41
Figure B-27 Option 1b local calibration residual plots – bootstrapping	41
Figure B-28 Option 1b fitted reliability model after local calibration – bootstrapping	42
Figure B-29 Option 1 measured versus predicted fatigue cracking – no sampling	43
Figure B-30 Option 1 local calibration results - no sampling	
Figure B-31 Option 1 local calibration residual plots - no sampling	
Figure B-32 Option 1 fitted reliability model after local calibration –no sampling	45
Figure B-33 Option 1 local calibration results - split sampling	15
Figure B-34 Option 1 local calibration residual plots - split sampling	10 47
Figure B-35 Option 1 fitted reliability model after local calibration – split sampling	/+ /18
Figure B-36 Option 1 repeated split sampling frequency distributions – calibration	
Figure B-37 Option 1 repeated split sampling frequency distributions – validation	رب ۱۵
Figure B-37 Option 1 local calibration residual plots repeated split sampling	
Figure B-38 Option 1 focal calibration residual plots – repeated split sampling	30 nnlina
Figure B-59 Option 1 fitted renability model after local canoration – repeated split san	iping 51
Figure B 40 Option 1 bootstrapping fraguency distributions	51 57
Figure B 41 Option 1 local calibration residual plata best stranging	52
Figure D 41 Option 1 fitted reliability model after local calibration - bootstrapping	32 52
Figure D-42 Option 1 Integ renability model after local calibration – bootstrapping	33
Figure B-45 Option 2 measured versus predicted fatigue cracking – no sampling	54

Figure	B- 44	Option 2	local calib	ration results – no sampling	54
Figure	B-45	Option 2	local calib	ration residual plots – no sampling	55
Figure	B-46	Option 2	fitted relia	bility model after local calibration –no sampling	55
Figure	B-47	Option 2	local calib	ration results - split sampling	56
Figure	B-48	Option 2	local calib	ration residual plots - split sampling	57
Figure	B-49	Option 2	fitted relia	bility model after local calibration – split sampling	58
Figure	B-50	Option 2	repeated st	blit sampling frequency distributions $-$ calibration	59
Figure	B-51	Option 2	repeated st	blit sampling frequency distributions – validation	59
Figure	B-52	Option 2	local calib	ration residual plots – repeated split sampling	60
Figure	B-53	Option 2	fitted relia	bility model after local calibration – repeated split sampling	19
8		option -			61
Figure	B-54	Option 2	bootstrapp	ing frequency distributions	62
Figure	B-55	Option 2	local calib	ration residual plots – bootstrapping	62
Figure	B-56	Option 2	fitted relia	bility model after local calibration – bootstrapping	63
Figure	B-57	Option 4	measured v	versus predicted fatigue cracking – no sampling	64
Figure	B-58	Option 4	local calib	ration results – no sampling	64
Figure	B-59	Option 4	local calib	ration residual plots – no sampling	65
Figure	B-60	Option 4	fitted relia	hility model after local calibration -no sampling	65
Figure	B-61	Option 4	local calib	ration results - solit sampling	66
Figure	B-62	Option 4	local calib	ration residual plots - split sampling	67
Figure	B-63	Option 4	fitted relia	hility model after local calibration – split sampling	68
Figure	B-64	Option 4	repeated sr	bilt sampling frequency distributions – calibration	69
Figure	B-65	Option 4	repeated sr	bit sampling frequency distributions – validation	69
Figure	B-66	Option 4	local calib	ration residual plots – repeated split sampling	70
Figure	B-67	Option 4	fitted relia	bility model after local calibration – repeated split sampling	νσ 1σ
I Iguie	D 07	Option 1	inted rend	only model after local canonation — repeated spin samplin	71
Figure	B-68	Option 4	bootstrapp	ing frequency distributions	72
Figure	B-69	Option 4	local calib	ration residual plots – bootstrapping	72
Figure	B-70	Option 4	fitted relia	bility model after local calibration – bootstrapping	73
Figure	B-71	Option 1	• Method 1	Total rutting local calibration results - no sampling	75
Figure	B-72	Option 1	· Method 1	HMA rutting local calibration results - no sampling	75
Figure	B-73	Option 1	· Method 1	Base rutting local calibration results - no sampling	75
Figure	B-74	Option 1	· Method 1	Subgrade rutting local calibration results - no sampling	76
Figure	B-74 B-75	Option 1	· Method 1	Total rutting residual plots - no sampling	76
Figure	B-76	Option 1	· Method 1	HMA rutting residual plots $-$ no sampling	76
Figure	B-70 B-77	Option 1	· Method 1	Base rutting residual plots - no sampling	70
Figure	D-778	Option 1	· Method 1	Subgrade rutting residual plots - no sampling	,, 77
Figure	D-70 B 70	Putting r	nodel relief	pility equations _ option 1 method 1 _ no sampling	78
Figure	D-19 B 80	Option 1	· Method 1	Total rutting local calibration results scalibrating	70 80
Figure	D-00 R 91	Option 1	· Method 1	HMA rutting local calibration results - split sampling	80
Figure	D-01 D 97	Option 1	· Mothod 1	Pasa rutting local calibration results – split sampling	0U Q1
Figure	D-02	Option 1	Mothod 1	Subgrade rutting local calibration results - split sampling	01
Figure	со-а 10 а	Option 1	Mothod 1	Dutting model validation and semaling	01
Figure	D-04 D 05	Option 1	Mothod 1	Total rutting residual plate applit sampling	02 02
Figure	D-03 лос	Option 1	Method 1	I otar rutting residual plots - split sampling	02 02
Figure	00-0 0 о о	Option 1	Mothed 1	Page mutting residual plots - split sampling	03
Figure	/ ŏ-ם סס ם	Option 1	. Mothed 1	Dase rutting residual plots - split sampling	03
Figure	Б- 88	Option I		Subgrade rutting residual plots - split sampling	03 04
Figure	в-87	Uption I	: Method I	kutting model validation residual plots – split sampling	δ4

Figure B-90 Rutting model reliability equations – option 1 method 1 – split sampling 85 Figure B-91 Option 1: Method 1 repeated split sampling total rutting frequency distributions Figure B-92 Option 1: Method 1 repeated split sampling total rutting frequency distributions Figure B-93 Option 1: Method 1 Total rutting residual plots - repeated split sampling 89 Figure B-94 Option 1: Method 1 HMA rutting residual plots - repeated split sampling 89 Figure B-95 Option 1: Method 1 Base rutting residual plots - repeated split sampling 89 Figure B-96 Option 1: Method 1 Subgrade rutting residual plots - repeated split sampling. 90 Figure B-97 Option 1: Method 1 Rutting model validation residual plots – repeated split Figure B-99 Option 1: Method 1 bootstrapping total rutting frequency distributions – Figure B-105 Option 1: Method 2 Total rutting local calibration results - no sampling 97 Figure B-106 Option 1: Method 2 HMA rutting local calibration results - no sampling 97 Figure B-108 Option 1: Method 2 Subgrade rutting local calibration results - no sampling . 98 Figure B-113 Rutting model reliability equations – option 1 method 2 – no sampling 100 Figure B-114 Option 1: Method 2 Total rutting local calibration results - split sampling... 102 Figure B-115 Option 1: Method 2 HMA rutting local calibration results - split sampling .. 102 Figure B-116 Option 1: Method 2 Base rutting local calibration results - split sampling.... 103 Figure B-117 Option 1: Method 2 Subgrade rutting local calibration results - split sampling Figure B-118 Option 1: Method 1 Rutting model validation – split sampling...... 104 Figure B-119 Option 1: Method 2 Total rutting local calibration residual plots - split Figure B-120 Option 1: Method 2 HMA rutting local calibration residual plots - split Figure B-121 Option 1: Method 2 Base rutting local calibration residual plots - split sampling Figure B-122 Option 1: Method 2 Subgrade rutting local calibration residual plots - split Figure B-123 Option 1: Method 2 Rutting model validation residual plots – split sampling Figure B-124 Rutting model reliability equations – option 1 method 2 – split sampling 107 Figure B-125 Option 1: Method 2 repeated split sampling total rutting frequency distributions

Figure B-126 Option 1: Method 2 repeated split sampling total rutting frequency distribut	ions
- Validation	
Figure B-127 Option 1: Method 2 Total rutting local calibration residual plots - repeated s	spiit 111
Figure B-128 Option 1: Method 2 HMA rutting local calibration residual plots - repeated	111
split sampling	111
Figure B-129 Option 1: Method 2 Base rutting local calibration residual plots - repeated s	plit
sampling	112
Figure B-130 Option 1: Method 2 Subgrade rutting local calibration residual plots - repea	ted
split sampling	112
Figure B-131 Option 1: Method 2 Rutting model validation residual plots - repeated split	
sampling	113
Figure B-132 Rutting model reliability equations – option 1 method 2 – repeated split	
sampling	114
Figure B-133 Option 1: Method 2 bootstrapping total rutting frequency distributions –	
calibration	116
Figure B-134 Option 1: Method 2 Total rutting local calibration residual plots - bootstrap	ping
	117
Figure B-135 Option 1: Method 2 HMA rutting local calibration residual plots -	117
bootstrapping	11/
Figure B-136 Option 1: Method 2 Base rutting local calibration residual plots - bootstrapp	$\frac{110}{110}$
Figure P 127 Option 1: Mathed 2 Subgrade rutting local calibration residual plats	118
hootstrapping	118
Figure B-138 Rutting model reliability equations – option 1 method 2 – bootstrapping	110
Figure B-139 Ontion 2: Method 1 – Total rutting local calibration results - no sampling	121
Figure B-140 Option 2: Method 1 – HMA rutting local calibration results - no sampling	121
Figure B-141 Option 2: Method 1 – Base rutting local calibration results - no sampling.	121
Figure B-142 Option 2: Method 1 – Subgrade rutting local calibration results - no sampling	ng
	122
Figure B-143 Option 2: Method 1 – Total rutting residual plots - no sampling	122
Figure B-144 Option 2: Method 1 – HMA rutting residual plots - no sampling	122
Figure B-145 Option 2: Method 1 – Base rutting residual plots - no sampling	123
Figure B-146 Option 2: Method 1 – Subgrade rutting residual plots ts - no sampling	123
Figure B-147 Rutting model reliability equations – option 2 method 1 – no sampling	124
Figure B-148 Option 2 Method 1 Total rutting local calibration results - split sampling	126
Figure B-149 Option 2: Method 1 HMA rutting local calibration results - split sampling	126
Figure B-150 Option 2: Method 1 Base rutting local calibration results - split sampling	127
Figure B-151 Option 2 Method 1 Subgrade rutting local calibration results - split samplin	g
	127
Figure B-152 Option 2: Method 1 – Rutting model validation – split sampling	128
Figure B-153 Option 2 Method 1 Total rutting residual plots - split sampling	128
Figure B-154 Option 2: Method 1 HMA rutting residual plots - split sampling	129
Figure B-155 Option 2: Method I Base rutting residual plots - split sampling	129
Figure B-156 Option 2 Method 1 Subgrade rutting residual plots - split sampling	129
Figure B-157 Option 2: Method 1 – Rutting model validation residual plots – split sampli	ng
Eigure D 159 Dutting model reliability equations _ option 2 method 1 _ galit according	150
rigure D-138 Kutting model reliability equations – option 2 method 1 – split sampling	131

Figure B-159 Option 2: Method 1 – repeated split sampling total rutting frequency Figure B-160 Option 2: Method 1 – repeated split sampling total rutting frequency Figure B-161 Option 2 Method 1 Total rutting residual plots - repeated split sampling..... 135 Figure B-162 Option 2: Method 1 HMA rutting residual plots - repeated split sampling.... 135 Figure B-163 Option 2: Method 1 Base rutting residual plots - repeated split sampling 135 Figure B-164 Option 2 Method 1 Subgrade rutting residual plots - repeated split sampling 136 Figure B-165 Option 2: Method 1 – Rutting model validation residual plots – repeated split Figure B-166 Rutting model reliability equations – option 2 method 1 – repeated split Figure B-167 Option 2: Method 1 – bootstrapping total rutting frequency distributions – Figure B-171 Option 2 Method 1 Subgrade rutting residual plots - bootstrapping 140 Figure B-172 Rutting model reliability equations – option 2 method 1 – bootstrapping 141 Figure B-173 Option 2: Method 2 – Total rutting local calibration results - no sampling... 143 Figure B-174 Option 2: Method 2 – HMA rutting local calibration results - no sampling .. 143 Figure B-175 Option 2: Method 2 – Base rutting local calibration results - no sampling.... 143 Figure B-176 Option 2: Method 2 – Subgrade rutting local calibration results - no sampling Figure B-178 Option 2: Method 2 – HMA rutting residual plots - no sampling 144 Figure B-181 Rutting model reliability equations – option 2 method 2 – no sampling 146 Figure B-182 Option 2: Method 2 – Total rutting local calibration results - split sampling 148 Figure B-183 Option 2: Method 2 – HMA rutting local calibration results - split sampling 148 Figure B-184 Option 2: Method 2 – Base rutting local calibration results - split sampling. 149 Figure B-185 Option 2: Method 2 – Subgrade rutting local calibration results - split sampling Figure B-187 Option 2: Method 2 – Total rutting residual plots - split sampling 150 Figure B-188 Option 2: Method 2 – HMA rutting residual plots - split sampling 151 Figure B-189 Option 2: Method 2 – Base rutting residual plots - split sampling...... 151 Figure B-190 Option 2: Method 2 – Subgrade rutting residual plots - split sampling 151 Figure B-191 Option 2: Method 2 – Rutting model validation residual plots – split sampling Figure B-192 Rutting model reliability equations – option 2 method 2 – split sampling 153 Figure B-193 Option 2: Method 2 – repeated split sampling total rutting frequency Figure B-194 Option 2: Method 2 – repeated split sampling total rutting frequency Figure B-195 Option 2: Method 2 – Total rutting residual plots – repeated split sampling. 157 Figure B-196 Option 2: Method 2 – HMA rutting residual plots - repeated split sampling. 157

Figure B-197 Option 2: Method 2 – Base rutting residual plots - repeated split sampling.. 157 Figure B-198 Option 2: Method 2 – Subgrade rutting residual plots - repeated split sampling Figure B-199 Option 2: Method 2 – Rutting model validation residual plots – repeated split Figure B-200 Rutting model reliability equations – option 2 method 2 – repeated split Figure B-201 Option 2: Method 2 – bootstrapping total rutting frequency distributions – Figure B-202 Option 2: Method 2 – Total rutting residual plots – bootstrapping...... 162 Figure B-203 Option 2: Method 2 – HMA rutting residual plots - bootstrapping...... 162 Figure B-204 Option 2: Method 2 – Base rutting residual plots - bootstrapping 162 Figure B-205 Option 2: Method 2 – Subgrade rutting residual plots - bootstrapping....... 163 Figure B-206 Rutting model reliability equations – option 2 method 2 – bootstrapping 164 Figure B-207 Option 4: Method 1 – Total rutting local calibration results - no sampling... 166 Figure B-208 Option 4: Method 1 – HMA rutting local calibration results - no sampling .. 166 Figure B-209 Option 4: Method 1 – Base rutting local calibration results - no sampling.... 166 Figure B-210 Option 4: Method 1 – Subgrade rutting local calibration results - no sampling Figure B-211 Option 4: Method 1 – Total rutting residual plots - no sampling...... 167 Figure B-212 Option 4: Method 1 – HMA rutting residual plots - no sampling 167 Figure B-213 Option 4: Method 1 – Base rutting residual plots - no sampling...... 168 Figure B-215 Rutting model reliability equations – option 4 method 1 – no sampling 169 Figure B-216 Option 4: Method 1 – Total rutting local calibration results - split sampling 171 Figure B-217 Option 4: Method 1 – HMA rutting local calibration results - split sampling 171 Figure B-218 Option 4: Method 1 – Base rutting local calibration results - split sampling. 172 Figure B-219 Option 4: Method 1 – Subgrade rutting local calibration results - split sampling Figure B-220 Option 4: Method 1 – Rutting model validation – split sampling...... 173 Figure B-221 Option 4: Method 1 – Total rutting residual plots - split sampling 173 Figure B-222 Option 4: Method 1 – HMA rutting residual plots - split sampling 174 Figure B-223 Option 4: Method 1 – Base rutting residual plots - split sampling...... 174 Figure B-224 Option 4: Method 1 – Subgrade rutting residual plots - split sampling 174 Figure B-225 Option 4: Method 1 – Rutting model validation residual plots – split sampling Figure B-226 Rutting model reliability equations – option 4 method 1 – split sampling 176 Figure B-227 Option 4: Method 1 – repeated split sampling total rutting frequency Figure B-228 Option 4: Method 1 – repeated split sampling total rutting frequency Figure B-229 Option 4: Method 1 – Total rutting residual plots – repeated split sampling. 180 Figure B-230 Option 4: Method 1 – HMA rutting residual plots - repeated split sampling. 180 Figure B-231 Option 4: Method 1 - Base rutting residual plots - repeated split sampling .. 180 Figure B-232 Option 4: Method 1 – Subgrade rutting residual plots - repeated split sampling Figure B-233 Option 4: Method 1 – Rutting model validation residual plots – repeated split

Figure B-234 Rutting model reliability equations – option 4 method 1 – repeated split Figure B-235 Option 4: Method 1 – bootstrapping total rutting frequency distributions – Figure B-237 Option 4: Method 1 – HMA rutting residual plots - bootstrapping...... 185 Figure B-239 Option 4: Method 1 – Subgrade rutting residual plots - bootstrapping...... 185 Figure B-240 Rutting model reliability equations – option 4 method 1 – bootstrapping 186 Figure B-241 Option 4: Method 2 – Total rutting local calibration results - no sampling ... 188 Figure B-242 Option 4: Method 2 – HMA rutting local calibration results - no sampling.. 188 Figure B-243 Option 4: Method 2 – Base rutting local calibration results - no sampling.... 188 Figure B-244 Option 4: Method 2 – Subgrade rutting local calibration results - no sampling Figure B-249 Rutting model reliability equations – option 4 method 2 – no sampling 191 Figure B-250 Option 4: Method 2 – Total rutting local calibration results - split sampling 193 Figure B-251 Option 4: Method 2 – HMA rutting local calibration results - split sampling 193 Figure B-252 Option 4: Method 2 – Base rutting local calibration results - split sampling. 194 Figure B-253 Option 4: Method 2 – Subgrade rutting local calibration results - split sampling Figure B-255 Option 4: Method 2 – Total rutting residual plots - split sampling 195 Figure B-256 Option 4: Method 2 – HMA rutting residual plots - split sampling 196 Figure B-257 Option 4: Method 2 – Base rutting residual plots - split sampling...... 196 Figure B-258 Option 4: Method 2 – Subgrade rutting residual plots - split sampling 196 Figure B-259 Option 4: Method 2 – Rutting model validation residual plots – split sampling Figure B-260 Rutting model reliability equations – option 4 method 2 – split sampling 198 Figure B-261 Option 4: Method 2 – repeated split sampling total rutting frequency Figure B-262 Option 4: Method 2 – repeated split sampling total rutting frequency Figure B-263 Option 4: Method 2 – Total rutting residual plots – repeated split sampling. 202 Figure B-264 Option 4: Method 2 – HMA rutting residual plots - repeated split sampling. 202 Figure B-265 Option 4: Method 2 – Base rutting residual plots - repeated split sampling.. 202 Figure B-266 Option 4: Method 2 – Subgrade rutting residual plots - repeated split sampling Figure B-267 Option 4: Method 2 – Rutting model validation residual plots – repeated split Figure B-268 Rutting model reliability equations – option 4 method 2 – repeated split Figure B-269 Option 4: Method 2 – bootstrapping total rutting frequency distributions – Figure B-270 Option 4: Method 2 – Total rutting residual plots - bootstrapping 206

Figure B-271 Option 4: Method 2 – HMA rutting residual plots - bootstrapping	. 207
Figure B-272 Option 4: Method 2 – Base rutting residual plots - bootstrapping	207
Figure B-273 Option 4: Method 2 – Subgrade rutting residual plots - bootstrapping	207
Figure B-274 Rutting model reliability equations – option 4 method 2 – bootstrapping	208
Figure B-275 Level 1 thermal cracking global model – option 1	209
Figure B-276 Level 1 thermal cracking local model $K = 0.5 - option 1$	210
Figure B-277 Level 1 thermal cracking local model $K = 0.75 - option 1$	210
Figure B-278 Level 1 thermal cracking local model $K = 1 - option 1$	211
Figure B-279 Level 1 thermal cracking local model $K = 1.1 - option 1$	211
Figure B-280 Level 1 thermal cracking local model $K = 1.2 - option 1$	212
Figure B-281 Level 1 thermal cracking local model K = 1.3 – option 1	212
Figure B-282 Level 1 thermal cracking local model $K = 1.4 - option 1$	213
Figure B-283 Level 1 thermal cracking local model $K = 1.7 - option 1$. 213
Figure B-284 Level 1 thermal cracking local model $K = 2 - option 1$	214
Figure B-285 Level 1 thermal cracking local model $K = 2.5 - option 1$	
Figure B-286 Level 1 Option 1 thermal cracking fitted reliability model	. 215
Figure B-287 Level 1 thermal cracking global model – option 2	216
Figure B-288 Level 1 thermal cracking local model $K = 0.5 - option 2$	216
Figure B-289 Level 1 thermal cracking local model $K = 0.75 - option 2$	217
Figure B-290 Level 1 thermal cracking local model $K = 1 - option 2$	217
Figure B-290 Level 1 thermal cracking local model $K = 1.1 - option 2$	218
Figure B-297 Level 1 thermal cracking local model $K = 1.1^{-1}$ option 2.	218
Figure B-293 Level 1 thermal cracking local model $K = 1.2$ option 2.	210
Figure B-294 Level 1 thermal cracking local model $K = 1.4 - option 2$	219
Figure B-295 Level 1 thermal cracking local model $K = 1.7$ option 2.	220
Figure B-296 Level 1 thermal cracking local model $K = 2 - $ option 2	220
Figure B-207 Level 1 thermal cracking local model $K = 2.5$ – option 2.	. 220
Figure B 208 Level 1 Option 2 thermal cracking fitted reliability model	. 221
Figure B 200 Level 3 thermal cracking global model _ option 1	. 221
Figure B 200 Level 3 thermal cracking local model $K = 2$ option 1	. 222
Figure B 301 Level 3 thermal cracking local model $\mathbf{K} = 2$ – option 1	. 222
Figure B 202 Level 3 thermal cracking local model $\mathbf{K} = 3 - \text{option } 1$.	. 223
Figure D-502 Level 5 thermal cracking local model $\mathbf{K} = 4 = 0$ putting 1	223
Figure D-505 Level 5 merinal cracking local model $\mathbf{K} = 5 - \text{option } 1$	223
Figure B-504 Level 5 Option 1 thermal cracking fitted fendolity model	224
Figure B-305 Level 3 thermal cracking global model – option 2	225
Figure B-506 Level 5 thermal cracking local model $\mathbf{K} = 2 - \text{option } 2$	225
Figure B-30/ Level 3 thermal cracking local model $K = 3 - option 2$	225
Figure B-308 Level 3 thermal cracking local model $K = 4 - option 2$	226
Figure B-309 Level 3 thermal cracking local model $K = 5 - option 2$	226
Figure B-310 Level 3 Option 2 thermal cracking fitted reliability model	
Figure B-311 Level 3 thermal cracking global model – option 3	
Figure B-312 Level 3 thermal cracking local model $K = 2 - option 3$	228
Figure B-313 Level 3 thermal cracking local model $K = 3 - option 3$	228
Figure B-314 Level 3 thermal cracking local model $K = 4 - option 3$	228
Figure B-315 Level 3 thermal cracking local model $K = 5 - option 3$	229
Figure B-316 Level 3 Option 4 thermal cracking fitted reliability model	. 229
Figure B-317 Option 1 IRI local calibration measured versus predicted – no sampling	. 230
Figure B-318 Option 1 IRI local calibration residual plots – no sampling	. 231

Figure B-319 Option 1 IRI local calibration measured versus predicted – split sampling... 232 Figure B-321 Option 1 IRI repeated split sampling frequency distributions – calibration .. 235 Figure B-322 Option 1 IRI repeated split sampling frequency distributions - validation.... 236 Figure B-323 Option 1 IRI local calibration residual plots – repeated split sampling 237 Figure B-326 Option 2 IRI local calibration measured versus predicted – no sampling..... 240 Figure B-328 Option 2 IRI local calibration measured versus predicted – split sampling... 242 Figure B-330 Option 2 IRI repeated split sampling frequency distributions – calibration .. 245 Figure B-331 Option 2 IRI repeated split sampling frequency distributions - validation.... 246 Figure B-332 Option 2 IRI local calibration residual plots – repeated split sampling 247 Figure B-333 Option 2 IRI local calibration residual plots – repeated split sampling 248 Figure B-335 Option 4 IRI local calibration measured versus predicted – no sampling..... 250 Figure B-337 Option 4 IRI local calibration measured versus predicted – split sampling... 252 Figure B-339 Option 4 IRI repeated split sampling frequency distributions – calibration .. 255 Figure B-340 Option 4 IRI repeated split sampling frequency distributions - validation.... 256 Figure B-341 Option 4 IRI local calibration residual plots – repeated split sampling 257 Figure B-344 Option 1 transverse cracking local calibration measured vs. predicted – no Figure B-347 Option 1 transverse cracking local calibration measured vs. predicted – split Figure B-349 Option 1 Transverse cracking reliability model fitting – split sampling....... 263 Figure B-350 Option 1 – Distribution of calibration parameters – repeated split sampling -Figure B-351 Option 1 – Distribution of calibration parameters – repeated split sampling -Figure B-353 Option 1 Transverse cracking reliability model fitting – repeated split sampling Figure B-356 Option 1 Transverse cracking reliability model fitting – bootstrapping 268 Figure B-357 Option 2 transverse cracking local calibration measured vs. predicted - no

Figure B-360 Option 2 transverse cracking local calibration measured vs. predicted – split Figure B-363 Option 2 – Distribution of calibration parameters – repeated split sampling -Figure B-364 Option 2 – Distribution of calibration parameters – repeated split sampling -Figure B-366 Option 2 Transverse cracking reliability model fitting – repeated split sampling Figure B-369 Option 2 Transverse cracking reliability model fitting – bootstrapping 277 Figure B-370 Option 3 transverse cracking local calibration measured vs. predicted – no Figure B-373 Option 3 transverse cracking local calibration measured vs. predicted – split Figure B-375 Option 3 Transverse cracking reliability model fitting – split sampling....... 281 Figure B-376 Option 3 – Distribution of calibration parameters – repeated split sampling -Figure B-377 Option 3 – Distribution of calibration parameters – repeated split sampling – Figure B-379 Option 3 Transverse cracking reliability model fitting – repeated split sampling Figure B-382 Option 3 Transverse cracking reliability model fitting – bootstrapping 286 Figure B-383 Option 4 transverse cracking local calibration measured vs. predicted – no Figure B-386 Option 4 transverse cracking local calibration measured vs. predicted – split Figure B-388 Option 4 Transverse cracking reliability model fitting – split sampling...... 290 Figure B-389 Option 4 – Distribution of calibration parameters – repeated split sampling -Figure B-390 Option 4 – Distribution of calibration parameters – repeated split sampling -Figure B-392 Option 4 Transverse cracking reliability model fitting – repeated split sampling Figure B-393 Option 4 – Distribution of calibration parameters – bootstrapping...... 294

Figure B-394 Option 3 transverse cracking residual plots – bootstrapping	. 295
Figure B-395 Option 4 Transverse cracking reliability model fitting – bootstrapping	. 295
Figure B-396 Option 1 – Global faulting model	. 296
Figure B-397 Option $1 - C1 = 0.4$. 297
Figure B-398 Option $1 - C1 = 0.5$. 297
Figure B-399 Option $1 - C1 = 0.6$. 297
Figure B-400 Option $1 - C1 = 0.65$. 298
Figure B-401 Option $1 - C1 = 0.7$. 298
Figure B-402 Option $1 - C1 = 0.75$. 298
Figure B-403 Option $1 - C1 = 0.8$. 299
Figure B-404 Option $1 - C1 = 0.85$. 299
Figure B-405 Option $1 - C1 = 0.9$. 299
Figure B-406 Option 1 faulting model reliability equation	. 300
Figure B-407 Option 2 – Global faulting model	. 301
Figure B-408 Option $2 - C1 = 0.4$. 301
Figure B-409 Option $2 - C1 = 0.5$. 301
Figure B-410 Option $2 - C1 = 0.6$. 302
Figure B-411 Option $2 - C1 = 0.65$. 302
Figure B-412 Option $2 - C1 = 0.7$. 302
Figure B-413 Option $2 - C1 = 0.75$. 303
Figure B-414 Option $2 - C1 = 0.8$. 303
Figure B-415 Option $2 - C1 = 0.85$. 303
Figure B-416 Option $2 - C1 = 0.9$. 304
Figure B-417 Option 2 faulting model reliability equation	. 304
Figure B-418 Option 3 - Global faulting model	. 305
Figure B-419 Option 3 - $C1 = 0.4$. 305
Figure B-420 Option 3 - $C1 = 0.5$. 306
Figure B-421 Option 3 - $C1 = 0.6$. 306
Figure B-422 Option 3 - $C1 = 0.65$. 306
Figure B-423 Option 3 - $C1 = 0.7$. 307
Figure B-424 Option 3 - $C1 = 0.75$. 307
Figure B-425 Option 3 - $C1 = 0.8$. 307
Figure B-426 Option 3 - $C1 = 0.85$. 308
Figure B-427 Option 3 - $C1 = 0.9$. 308
Figure B-428 Option 3 faulting model reliability equation	. 308
Figure B-429 Option 4 - Global faulting model	309
Figure B-430 Option 4 - $C1 = 0.4$	309
Figure B-431 Option 4 - $C1 = 0.5$	310
Figure B-432 Option 4 - $C1 = 0.6$	310
Figure B-433 Option 4 - $C1 = 0.65$	310
Figure B-434 Option 4 - $C1 = 0.7$	311
Figure B-435 Ontion 4 - $C1 = 0.75$	311
Figure B-436 Option 4 - $C1 = 0.8$	311
Figure B-437 Option 4 - $C1 = 0.85$	312
Figure B-438 Ontion 4 - $C1 = 0.9$	312
Figure B-439 Option 4 faulting model reliability equation	312
Figure B-440 Option 1 IRI local calibration measured versus predicted – no sampling	312
Figure B-441 Option 1 IRI local calibration residual plots – no sampling	31/
тізане Б-тті орнон тілкі юсаї сапоганон тезіццаї ріоть – по запірніця	. 514

Figure B-442 Option 1 IRI local calibration measured versus predicted – split sampling... 315 Figure B-444 Option 1 IRI repeated split sampling frequency distributions – calibration .. 318 Figure B-445 Option 1 IRI repeated split sampling frequency distributions – validation.... 319 Figure B-446 Option 1 IRI local calibration residual plots – repeated split sampling 320 Figure B-448 Option 1 IRI local calibration residual plots – repeated split sampling 322 Figure B-449 Option 2 IRI local calibration measured versus predicted – no sampling...... 323 Figure B-451 Option 2 IRI local calibration measured versus predicted – split sampling... 324 Figure B-453 Option 2 IRI repeated split sampling frequency distributions – calibration .. 327 Figure B-454 Option 2 IRI repeated split sampling frequency distributions – validation.... 327 Figure B-455 Option 2 IRI local calibration residual plots – repeated split sampling 328 Figure B-458 Option 3 IRI local calibration measured versus predicted – no sampling...... 331 Figure B-460 Option 3 IRI local calibration measured versus predicted – split sampling... 332 Figure B-462 Option 3 IRI repeated split sampling frequency distributions – calibration ... 335 Figure B-463 Option 3 IRI repeated split sampling frequency distributions – validation.... 336 Figure B-467 Option 4 IRI local calibration measured versus predicted – no sampling...... 340 Figure B-469 Option 4 IRI local calibration measured versus predicted – split sampling... 341 Figure B-471 Option 4 IRI repeated split sampling frequency distributions – calibration .. 344 Figure B-472 Option 4 IRI repeated split sampling frequency distributions – validation.... 344 Figure B-473 Option 4 IRI local calibration residual plots – repeated split sampling 345

Figure 1	3-490 Rutting 1	model validation – option 2 method 1 36	52
Figure 1	3-491 Rutting 1	model residual plots – option 2 method 1 36	53
Figure	3-492 Rutting	model validation – option 2 method 2 36	54
Figure	3-493 Rutting 1	model residual plots – option 2 method 2 36	55
Figure 1	3-494 Rutting 1	model validation – option 4 method 1 36	56
Figure 1	3-495 Rutting 1	model residual plots – option 4 method 1 36	57
Figure 1	3-496 Rutting 1	model validation – option 4 method 2 36	58
Figure 1	3-497 Rutting 1	model residual plots – option 4 method 2 36	59
Figure 1	3-498 IRI mod	lel validation – option 1	70
Figure 1	3-499 Option 1	l residual plots	71
Figure 1	B-500 IRI mod	lel validation – option 2	72
Figure 1	3-501 Option 2	2 residual plots	73
Figure 1	B-502 IRI mod	lel validation – option 4	74
Figure 1	3-503 Option 4	4 residual plots	75
Figure 1	3-504 Option 1	l validation results	76
Figure 1	3-505 Option 1	I residual plots	77
Figure 1	3-506 Option 2	2 validation results	78
Figure 1	B-507 Option 2	2 residual plots	79
Figure 1	3-508 Option 3	3 validation results	30
Figure 1	3-509 Option 3	3 residual plots	31
Figure 1	B-510 Option 4	4 validation results	32
Figure 1	B-511 Option 4	4 residual plots	33
Figure 1	B-512 IRI mod	lel validation – option 1 38	34
Figure 1	B-513 Option 1	1 residual plots	35
Figure 1	B-514 IRI mod	lel validation – option 2 38	36
Figure 1	B-515 Option 2	2 residual plots	37
Figure 1	B-516 IRI mod	lel validation – option 3 38	38
Figure 1	B-517 Option 3	3 residual plots	39
Figure 1	3-518 IRI mod	lel validation – option 4 39	90
Figure 1	B-519 Option 4	4 residual plots	91
Figure 1	B-520 Alligator	r cracking for Project 20046	92
Figure 1	B-521 Longitud	dinal cracking for Project 20046	92
Figure 1	B-522 Rutting	for Project 20046) 3
Figure 1	B-523 Thermal	l cracking for Project 20046) 3
Figure 1	B-524 IRI for F	Project 20046) 3
Figure 1	B-525 Transver	rse cracking for Project 45855	94
Figure 1	3-526 Faulting	g for Project 45855) 4
Figure 1	B-527 IRI for F	Project 45855) 4

B.1 Flexible Pavement Performance Prediction Models

B.1.1 Fatigue Cracking Model – Bottom-up

B.1.1.1 Option 1a

No sampling

Parameter	Global model	Local model
SEE	7.64	6.71
Bias	-4.19	-1.29
R^2	0.01	0.02
t-test pvalue	0.00	0.00
Intercept $= 0$	0.00	0.00
Slope = 1	0.00	0.00
C1	1.00	0.50
C2	1.00	0.56

Figure B-1 Option 1a measured versus predicted fatigue cracking - no sampling

Figure B-3 Option 1a local calibration residual plots - no sampling

Table B-2 Option 1a global and local alligator cracking model reliability – no sampling

Global model reliability equation	Local model reliability equation
$s_{e(Alligator)} = 1.13 + \frac{13}{1 + e^{7.57 - 15.5 \times log(D)}}$	$s_{e(Alligator)} = 2.3988 + \frac{15.676}{1 + e^{0.1475 - 0.4641 \times log(D)}}$

Figure B-4 Option 1a fitted reliability model after local calibration -no sampling

Split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	8.02	7.00	6.00
Bias	-4.39	-1.37	-0.78
R^2	0.02	0.03	0.01
t-test pvalue	0.00	0.00	0.20
Intercept $= 0$	0.00	0.00	0.00
Slope = 1	0.00	0.00	0.00
C1	1.00	0.50	0.50
C2	1.00	0.56	0.56

Table B-3 Option 1a local calibration results – split sampling

Figure B-5 Option 1a local calibration results - split sampling

Figure B-6 Option 1a local calibration residual plots - split sampling

Table B-4 Option 1a global and local alligator cracking model reliability – split sampling

Global model reliability equation	Local model reliability equation
$s_{e(Alligator)} = 1.13 + \frac{13}{1 + e^{7.57 - 15.5 \times log(D)}}$	$s_{e(Alligator)} = 0.6 + \frac{24}{1 + e^{0.1 - 0.5 \times log(D)}}$

Figure B-7 Option 1a fitted reliability model after local calibration – split sampling

Table D-5 Option 1a local calibration results – repeated split sampling				
Global Model				
Domomotor	Global Model	Global Model	Global model	Global model
Parameter	Mean	Median	lower CI	upper CI
SEE	7.65	7.69	6.79	8.35
Bias	-4.19	-4.20	-4.66	-3.66
C1	1.00	1.00	-	-
C2	1.00	1.00	-	-
	· · · · · · · · · · · · · · · · · · ·	Local Mod	lel	
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	6.71	6.76	5.84	7.39
Bias	-1.22	-1.24	-1.64	-0.68
C1	0.50	0.50	0.47	0.50
C2	0.56	0.56	0.56	0.56
Local Model Validation				
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	6.71	6.69	4.90	8.48
Bias	-1.20	-1.22	-2.68	0.43
C1	0.50	0.50	0.47	0.50
C2	0.56	0.56	0.56	0.56

Repeated split sampling

Figure B-8 Option 1a repeated split sampling frequency distributions – calibration

Figure B-9 Option 1a repeated split sampling frequency distributions – validation

Figure B-10 Option 1a local calibration residual plots – repeated split sampling

 Table B-6 Option 1a global and local alligator cracking model reliability – repeated split sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Alligator)} = 1.13 + \frac{13}{1 + e^{7.57 - 15.5 \times log(D)}}$	$s_{e(Alligator)} = 0.9919 + \frac{17.093}{1 + e^{0.1103 - 0.4361 \times log(D)}}$	

Figure B-11 Option 1a fitted reliability model after local calibration – repeated split sampling

Bootstrapping

	-			
Global Model				
Doromotor	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	7.62	7.61	6.38	8.93
Bias	-4.19	-4.18	-5.01	-3.45
C1	1.00	1.00	-	-
C2	1.00	1.00	-	-
Local Model				
Doromotor	Local Model	Local Model	Local model	Local model
r ai ainetei	Mean	Median	lower CI	upper CI
SEE	6.69	6.66	5.53	7.88
Bias	-1.16	-1.15	-1.87	-0.43
C1	0.50	0.50	0.46	0.50
C2	0.56	0.56	0.56	0.56

 Table B-7 Option 1a local calibration results – bootstrapping

Figure B-13 Option 1a local calibration residual plots – bootstrapping

Table B-8 Option 1a global and local alligator cracking model reliability – bootstrapping

Figure B-14 Option 1a fitted reliability model after local calibration – bootstrapping

B.1.1.2 Option 1b

No sampling

Parameter	Global model	Local model
SEE	4.02	3.67
Bias	-2.00	-0.75
R^2	0.00	0.00
t-test pvalue	0.00	0.09
Intercept $= 0$	0.00	0.00
Slope = 1	0.00	0.00
C1	1.00	0.68
C2	1.00	0.56

Table B-9 Option 1a local calibration results – no sampling

Figure B-15 Option 1b measured versus predicted fatigue cracking – no sampling

Figure B-17 Option 1b local calibration residual plots – no sampling

Table B-10 Option 1b global and local alligator cracking model reliability – nosampling

Global model reliability equation	Local model reliability equation
$s_{a(Alliantor)} = 1.13 + \frac{13}{757.1554(D)}$	$s_{c(Allignmer)} = 0.01 + \frac{22.074}{100.05228 \log(D)}$
$1 + e^{1.5 - 15.5 \times log(D)}$	$1 + e^{1.00 - 0.5528 \times log(D)}$

Figure B-18 Option 1b fitted reliability model after local calibration -no sampling

Split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	4.40	4.02	2.64
Bias	-2.22	-0.84	-0.34
R^2	0.00	0.00	0.02
t-test pvalue	0.00	0.14	0.59
Intercept $= 0$	0.00	0.00	0.00
Slope = 1	0.00	0.00	0.00
C1	1.00	0.68	0.68
C2	1.00	0.56	0.56

Table B-11 Option 1b local calibration results – split sampling

Figure B-19 Option 1b local calibration results - split sampling

Figure B-20 Option 1b local calibration residual plots - split sampling

 Table B-12 Option 1b global and local alligator cracking model reliability – split

 sampling

Global model reliability equation	Local model reliability equation
$s_{e(Alligator)} = 1.13 + \frac{13}{1 + e^{7.57 - 15.5 \times log(D)}}$	$s_{e(Alligator)} = 0.01 + \frac{24.715}{1 + e^{1.00 - 0.6448 \times log(D)}}$

Figure B-21 Option 1b fitted reliability model after local calibration – split sampling *Repeated split sampling*

Global Model					
Doromotor	Global Model	Global Model	Global model	Global model	
Farameter	Mean	Median	lower CI	upper CI	
SEE	4.03	4.10	3.03	4.74	
Bias	-2.01	-2.03	-2.56	-1.41	
C1	1.00	1.00	-	-	
C2	1.00	1.00	-	-	
		Local Mod	del		
Doromotor	Local Model	Local Model	Local model lower	Local model upper	
1 arameter	Mean	Median	CI	CI	
SEE	3.66	3.72	2.77	4.27	
Bias	-0.73	-0.76	-1.04	-0.32	
C1	0.68	0.68	0.61	0.72	
C2	0.56	0.56	0.56	0.56	
		Local Model Va	alidation		
Doromotor	Local Model	Local Model	Local model lower	Local model upper	
Faranieter	Mean	Median	CI	CI	
SEE	3.77	3.76	1.87	5.41	
Bias	-0.63	-0.69	-2.37	1.54	
C1	0.68	0.68	0.61	0.72	
C2	0.56	0.56	0.56	0.56	

Table B-13 Option 1b local calibration results – repeated split sampling

Figure B-22 Option 1b repeated split sampling frequency distributions – calibration

Figure B-23 Option 1b repeated split sampling frequency distributions – validation

Figure B-24 Option 1b local calibration residual plots – repeated split sampling

Table B-14 Option 1b global and local alligator cracking model reliability - repeated
split sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Alligator)} = 1.13 + \frac{13}{1 + e^{7.57 - 15.5 \times log(D)}}$	$s_{e(Alligator)} = 0.01 + \frac{33.088}{1 + e^{1.397 - 0.5985 \times log(D)}}$	

Figure B-25 Option 1b fitted reliability model after local calibration – repeated split sampling

Bootstrapping

Global Model					
Doromotor	Global Model	Global Model	Global model	Global model	
Farameter	Mean	Median	lower CI	upper CI	
SEE	3.97	3.98	2.70	5.33	
Bias	-2.01	-2.00	-2.95	-1.19	
C1	1.00	1.00	-	-	
C2	1.00	1.00	-	-	
		Local Mod	lel		
Doromotor	Local Model	Local Model	Local model	Local model	
r ai aiiietei	Mean	Median	lower CI	upper CI	
SEE	3.60	3.62	2.50	4.75	
Bias	-0.69	-0.69	-1.26	-0.15	
C1	0.67	0.68	0.59	0.72	
C2	0.56	0.56	0.56	0.56	

Table B-15 Option 1b local calibration results – bootstrapping

-80 L 0 -80 L 0 б б Predicted alligator cracking (% lane area) Predicted alligator cracking (% lane area) (a) Global model (b) Local model

Figure B-27 Option 1b local calibration residual plots – bootstrapping

Table B-16 Option 1b global and local alligator cracking model reliability – bootstrapping

Figure B-28 Option 1b fitted reliability model after local calibration – bootstrapping

B.1.2 Fatigue Cracking Model – Top-down

B.1.2.1 Option 1

No sampling

Parameter	Global model	Local model
SEE	741.21	644.47
Bias	-409.32	-125.44
R^2	0.01	0.03
t-test pvalue	0.00	0.00
Intercept $= 0$	0.00	0.00
Slope = 1	0.00	0.00
C1	7.00	3.32
C2	3.50	1.25

Figure B-29 Option 1 measured versus predicted fatigue cracking – no sampling

Figure B-31 Option 1 local calibration residual plots - no sampling

Table B-18 Option 1 global and local alligator cracking model reliability – no sampling

Global model reliability equation	Local model reliability equation
$s_{e(Longitudinal)} = 200 + \frac{2300}{1 + e^{1.07 - 2.165 \times log(D_{ud} + 0.0001)}}$	$s_{e(Longitudinal)} = 150 + \frac{2300}{1 + e^{2 - 0.6 \times \log(D_{ud} + 0.0001)}}$

Figure B-32 Option 1 fitted reliability model after local calibration -no sampling

Split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	807.52	700.71	494.75
Bias	-453.48	-141.54	-68.73
R^2	0.00	0.02	0.02
t-test pvalue	0.00	0.00	0.13
Intercept $= 0$	0.00	0.00	0.00
Slope = 1	0.00	0.00	0.00
C1	7.00	3.30	3.30
C2	3.5	1.25	1.25

 Table B-19 Option 1 local calibration results – split sampling

Figure B-33 Option 1 local calibration results - split sampling

Figure B-34 Option 1 local calibration residual plots - split sampling

 Table B-20 Option 1 global and local alligator cracking model reliability – split

 sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Longitudinal)} = 200 + \frac{2300}{1 + e^{1.07 - 2.165 \times \log(D_{ud} + 0.0001)}}$	$s_{e(Longitudinal)} = 150 + \frac{2300}{1 + e^{2.1 - 0.4 \times log(D_{ud} + 0.0001)}}$	

Figure B-35 Option 1 fitted reliability model after local calibration – split sampling

Repeated split sampling

Table]	B-21	Option	1 local	calibration	results – r	epeated s	plit sam	pling
								r 0

Global Model					
Doromotor	Global Model	Global Model	Global model	Global model	
Faranneter	Mean	Median	lower CI	upper CI	
SEE	739.96	742.34	642.99	818.50	
Bias	-408.56	-408.06	-460.33	-353.78	
C1	7.00	7.00	-	-	
C2	3.50	3.50	-	-	
		Local Mo	del		
Doromotor	Local Model	Local Model	Local model lower	Local model upper	
Farameter	Mean	Median	CI	CI	
SEE	642.53	645.28	555.83	710.83	
Bias	-124.58	-124.76	-157.32	-90.77	
C1	3.32	3.32	3.16	3.52	
C2	1.25	1.25	1.25	1.25	
		Local Model Va	alidation		
Doromotor	Local Model	Local Model	Local model lower	Local model upper	
Faranneter	Mean	Median	CI	CI	
SEE	648.70	650.68	466.25	830.75	
Bias	-124.93	-128.32	-308.60	64.65	
C1	3.32	3.32	3.16	3.52	
C2	1.25	1.25	1.25	1.25	

Figure B-36 Option 1 repeated split sampling frequency distributions – calibration

Figure B-37 Option 1 repeated split sampling frequency distributions – validation

Figure B-38 Option 1 local calibration residual plots – repeated split sampling

 Table B-22 Option 1 global and local alligator cracking model reliability – repeated split sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Longitudinal)} = 200 + \frac{2300}{1 + e^{1.07 - 2.165 \times \log(D_{td} + 0.0001)}}$	$s_{e(Longitudinal)} = 150 + \frac{2300}{1 + e^{2.2 - 0.61 \times \log(D_{td} + 0.0001)}}$	

Figure B-39 Option 1 fitted reliability model after local calibration – repeated split sampling

Bootstrapping

	-				
Global Model					
Doromotor	Global Model	Global Model	Global model	Global model	
Farameter	Mean	Median	lower CI	upper CI	
SEE	741.41	738.34	614.64	871.40	
Bias	-411.36	-409.36	-495.00	-335.23	
C1	7.00	7.00	-	-	
C2	3.50	3.50	-	-	
		Local Mod	el		
Doromotor	Local Model	Local Model	Local model	Local model	
Parameter	Mean	Median	lower CI	upper CI	
SEE	641.44	640.16	526.91	759.87	
Bias	-122.72	-121.44	-175.87	-73.53	
C1	3.32	3.32	3.04	3.58	
C2	1.25	1.25	1.25	1.25	

 Table B-23 Option 1 local calibration results – bootstrapping

Figure B-41 Option 1 local calibration residual plots – bootstrapping

Table B-24 Option 1 global and local alligator cracking model reliability – bootstrapping

Figure B-42 Option 1 fitted reliability model after local calibration – bootstrapping

B.1.2.2 Option 2

No sampling

Parameter	Global model	Local model
SEE	998.85	856.06
Bias	-580.99	-185.37
R^2	0.01	0.03
t-test pvalue	0.00	0.00
Intercept $= 0$	0.00	0.00
Slope = 1	0.00	0.00
C1	7.00	2.97
C2	3.50	1.20

Table B-25 Option 2 local calibration results – no sampling

Figure B-43 Option 2 measured versus predicted fatigue cracking – no sampling

Figure B-44 Option 2 local calibration results – no sampling

Figure B-45 Option 2 local calibration residual plots - no sampling

Table B-26 Option 2 global and local alligator cracking model reliability – no sampling

Figure B-46 Option 2 fitted reliability model after local calibration -no sampling

Split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	997.83	858.43	856.74
Bias	-563.66	-177.72	-148.71
R^2	0.01	0.03	0.01
t-test pvalue	0.00	0.00	0.03
Intercept $= 0$	0.03	0.00	0.00
Slope = 1	0.00	0.00	0.00
C1	7.00	2.93	2.93
C2	3.50	1.20	1.20

Table B-27 Option 2 local calibration results – split sampling

Figure B-47 Option 2 local calibration results - split sampling

Figure B-48 Option 2 local calibration residual plots - split sampling

 Table B-28 Option 2 global and local alligator cracking model reliability – split

 sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Longitudinal)} = 200 + \frac{2300}{1 + e^{1.07 - 2.165 \times log(D_{ud} + 0.0001)}}$	$s_{e(Longitudinal)} = 250 + \frac{3000}{1 + e^{1.9677 - 1.2723 \times \log(D_{ud} + 0.0001)}}$	

Global Model				
Doromotor	Global Model	Global Model	Global model	Global model
Faranieter	Mean	Median	lower CI	upper CI
SEE	997.60	1007.73	865.75	1092.97
Bias	-581.11	-583.28	-646.35	-509.97
C1	7.00	7.00	-	-
C2	3.50	3.50	-	-
		Local Mod	del	
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	853.26	857.89	748.64	935.63
Bias	-184.74	-184.62	-237.16	-128.13
C1	2.98	2.98	2.75	3.20
C2	1.20	1.20	1.20	1.20
		Local Model Va	alidation	
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	864.65	861.78	648.52	1084.79
Bias	-180.99	-182.84	-417.00	93.67
C1	2.98	2.98	2.75	3.20
C2	1.20	1.20	1.20	1.20

 Table B-29 Option 2 local calibration results – repeated split sampling

Figure B-50 Option 2 repeated split sampling frequency distributions – calibration

Figure B-51 Option 2 repeated split sampling frequency distributions – validation

Figure B-52 Option 2 local calibration residual plots – repeated split sampling

Table B-30 Option 2 global and local alligator cracking model reliability – repeated split sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Longitudinal)} = 200 + \frac{2300}{1 + e^{1.07 - 2.165 \times log(D_{td} + 0.0001)}}$	$s_{e(Longitudinal)} = 300 + \frac{3000}{1 + e^{1.8 - 0.61 \times log(D_{td} + 0.0001)}}$	

Figure B-53 Option 2 fitted reliability model after local calibration – repeated split sampling

Bootstrapping

	-				
Global Model					
Doromotor	Global Model	Global Model	Global model	Global model	
r ai ailietei	Mean	Median	lower CI	upper CI	
SEE	996.20	992.28	831.70	1200.25	
Bias	-580.85	-580.61	-691.15	-480.97	
C1	7.00	7.00	-	-	
C2	3.50	3.50	-	-	
	Local Model				
Doromotor	Local Model	Local Model	Local model	Local model	
Parameter	Mean	Median	lower CI	upper CI	
SEE	850.44	847.03	717.48	1018.32	
Bias	-181.97	-180.66	-264.64	-105.74	
C1	2.97	2.98	2.64	3.29	
C2	1.20	1.20	1.20	1.20	

 Table B-31 Option 2 local calibration results – bootstrapping

Figure B-54 Option 2 bootstrapping frequency distributions

Figure B-55 Option 2 local calibration residual plots – bootstrapping

Table B-32 Option 2 global and local alligator cracking model reliability – bootstrapping

Figure B-56 Option 2 fitted reliability model after local calibration – bootstrapping

B.1.2.3 Option 4

No sampling

Parameter	Global model	Local model
SEE	1518.82	1213.53
Bias	-1071.64	-382.70
R^2	0.00	0.04
t-test pvalue	0.00	0.00
Intercept $= 0$	0.12	0.00
Slope = 1	0.00	0.00
C1	7.00	2.36
C2	3.50	1.20

Table B-33 Option 4 local calibration results – no sampling

Figure B-57 Option 4 measured versus predicted fatigue cracking – no sampling

Figure B-58 Option 4 local calibration results – no sampling

Figure B-59 Option 4 local calibration residual plots – no sampling

Table B-34 Option 4 global and local alligator cracking model reliability – no sampling

Figure B-60 Option 4 fitted reliability model after local calibration -no sampling

Split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	1537.23	1193.07	1313.41
Bias	-1040.89	-310.60	-618.73
R^2	0.00	0.08	0.07
t-test pvalue	0.00	0.01	0.00
Intercept $= 0$	0.14	0.00	0.00
Slope = 1	0.00	0.00	0.00
C1	7.00	2.37	2.37
C2	3.50	1.20	1.20

Table B-35 Option 4 local calibration results – split sampling

Figure B-61 Option 4 local calibration results - split sampling

Figure B-62 Option 4 local calibration residual plots - split sampling

 Table B-36 Option 4 global and local alligator cracking model reliability – split

 sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Longitudinal)} = 200 + \frac{2300}{1 + e^{1.07 - 2.165 \times \log(D_{id} + 0.0001)}}$	$s_{e(Longitudinal)} = 700 + \frac{3000}{1 + e^{0.5 - 1.0 \times \log(D_{ud} + 0.0001)}}$	

Global Model				
Doromotor	Global Model	Global Model	Global model	Global model
Faranieter	Mean	Median	lower CI	upper CI
SEE	1526.24	1566.61	1262.97	1704.61
Bias	-1077.40	-1082.03	-1243.48	-898.41
C1	7.00	7.00	-	-
C2	3.50	3.50	-	-
		Local Mod	del	
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	1200.63	1208.68	973.63	1378.28
Bias	-322.87	-321.70	-485.94	-159.86
C1	2.27	2.39	1.79	2.40
C2	1.20	1.20	1.20	1.20
		Local Model Va	alidation	
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	1283.29	1268.41	777.59	1800.53
Bias	-287.20	-364.11	-900.44	719.47
C1	2.27	2.39	1.79	2.40
C2	1.20	1.20	1.20	1.20

 Table B-37 Option 4 local calibration results – repeated split sampling

Figure B-64 Option 4 repeated split sampling frequency distributions – calibration

Figure B-65 Option 4 repeated split sampling frequency distributions – validation

Figure B-66 Option 4 local calibration residual plots – repeated split sampling

Table B-38 Option 4 global and local alligator cracking model reliability – repeated split sampling

Global model reliability equation	Local model reliability equation	
$s_{e(Longitudinal)} = 200 + \frac{2300}{1 + e^{1.07 - 2.165 \times log(D_{td} + 0.0001)}}$	$s_{e(Longitudinal)} = 700 + \frac{3000}{1 + e^{1.1 - 0.9 \times \log(D_{td} + 0.0001)}}$	

Figure B-67 Option 4 fitted reliability model after local calibration – repeated split sampling

Bootstrapping

	_			
Global Model				
Doromotor	Global Model	Global Model	Global model	Global model
r ai ailietei	Mean	Median	lower CI	upper CI
SEE	1512.27	1501.86	1169.60	1930.76
Bias	-1072.23	-1060.70	-1385.29	-807.29
C1	7.00	7.00	-	-
C2	3.50	3.50	-	-
		Local Mod	el	
Doromotor	Local Model	Local Model	Local model	Local model
Farameter	Mean	Median	lower CI	upper CI
SEE	1189.44	1187.05	898.51	1488.09
Bias	-283.96	-282.67	-507.09	-67.54
C1	2.23	2.36	1.69	2.40
C2	1.20	1.20	1.20	1.20

 Table B-39 Option 4 local calibration results – bootstrapping

Figure B-69 Option 4 local calibration residual plots – bootstrapping
Table B-40 Option 4 global and local alligator cracking model reliability – bootstrapping

Figure B-70 Option 4 fitted reliability model after local calibration – bootstrapping

B.1.3 Rutting Model

B.1.3.1 Option 1 – Method 1

No sampling

Table B-41 Option 1: Method 1 – Global model goodness of fit – no sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0786	-0.0037
Base rut	0.1267	0.1111
Subgrade	0.2242	0.2143
Total rut	0.3431	0.3217

 Table B-42 Option 1: Method 1 – Global model p-values

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.3220	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

Table B-43 Option 1: Method 1 – Local model goodness of fit- no sampling

HMA layer	SEE	Bias
AC rut	0.0783	-0.0094
Base rut	0.0262	-0.0034
Subgrade	0.0228	-0.0003
Total rut	0.0869	-0.0132

Table B-44 Option 1: Method 1 – Local model *p*-values– no sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0110	0.0000	0.0000
Base rut	0.0054	0.0000	0.0000
Subgrade	0.7695	0.0000	0.0000
Total rut	0.0013	0.0000	0.0000

Table B-45 Option 1: Method 1 – Local model *p*-values– no sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.9580
Base rutting (bs1)	1.0000	0.1181
Subgrade rutting (bsg1)	1.0000	0.0410

Figure B-71 Option 1: Method 1 Total rutting local calibration results - no sampling

Figure B-72 Option 1: Method 1 HMA rutting local calibration results - no sampling

Figure B-73 Option 1: Method 1 Base rutting local calibration results - no sampling

Figure B-74 Option 1: Method 1 Subgrade rutting local calibration results - no sampling

Figure B-75 Option 1: Method 1 Total rutting residual plots - no sampling

Figure B-76 Option 1: Method 1 HMA rutting residual plots - no sampling

Figure B-78 Option 1: Method 1 Subgrade rutting residual plots - no sampling

Figure B-79 Rutting model reliability equations – option 1 method 1 – no sampling

Split sampling

Table B-46 Option 1: Method 1 – Global model goodness of fit – split sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0769	0.0034
Base rut	0.1313	0.1134
Subgrade	0.2243	0.2139
Total rut	0.3534	0.3306

Table B-47 Option 1: Method 1 – Global model p-values - split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.4496	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

 Table B-48 Option 1: Method 1 – Local model goodness of fit– split sampling

HMA layer	SEE	Bias
AC rut	0.0759	-0.0080
Base rut	0.0268	-0.0040
Subgrade	0.0236	-0.0004
Total rut	0.0853	-0.0125

 Table B-49 Option 1: Method 1 – Local model *p*-values– split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0674	0.0000	0.0000
Base rut	0.0086	0.0000	0.0000
Subgrade	0.7433	0.0000	0.0000
Total rut	0.0109	0.0000	0.0000

Table B-50 Option 1: Method 1 – Local model *p*-values – split sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.9204
Base rutting (bs1)	1.0000	0.1209
Subgrade rutting (bsg1)	1.0000	0.0435

Table B-51 Option 1: Method 1 – Local model validation p-values – split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0000	0.0000	0.0000
Base rut	0.5941	0.0000	0.0000
Subgrade	0.3416	0.0000	0.0000
Total rut	0.0002	0.0000	0.0000

HMA layer	SEE	Bias
AC rut	0.0841	-0.0281
Base rut	0.0250	-0.0011
Subgrade	0.0210	0.0017
Total rut	0.0913	-0.0276

Table B-52 Option 1: Method 1 – Local model validation SEE and bias – split sampling

Figure B-80 Option 1: Method 1 Total rutting local calibration results - split sampling

Figure B-81 Option 1: Method 1 HMA rutting local calibration results - split sampling

Figure B-82 Option 1: Method 1 Base rutting local calibration results - split sampling

sampling

Figure B-84 Option 1: Method 1 Rutting model validation – split sampling

Figure B-85 Option 1: Method 1 Total rutting residual plots - split sampling

Figure B-88 Option 1: Method 1 Subgrade rutting residual plots - split sampling

Figure B-89 Option 1: Method 1 Rutting model validation residual plots – split sampling

Figure B-90 Rutting model reliability equations – option 1 method 1 – split sampling

Repeated split sampling

Global	Average	SEE	SEE	Average bias	Bias	Bias
Model	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0785	0.0729	0.0836	-0.0037	-0.0113	0.0037
Base rutting	0.1268	0.1170	0.1342	0.1111	0.1041	0.1182
Subgrade rutting	0.2245	0.2168	0.2318	0.2144	0.2072	0.2216
Total rutting	0.3435	0.3270	0.3573	0.3218	0.3083	0.3339

Table B-53 Option 1: Method 1 – Global model SEE and bias – repeated split sampling

Table B-54 Option 1: Method 1 – Local model SEE and bias – repeated split sampling

Calibration sat	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0781	0.0260	0.0224	0.0867
SEE Lower CI	0.0726	0.0193	0.0133	0.0796
SEE Upper CI	0.0830	0.0298	0.0270	0.0926
Average bias (in.)	-0.0092	-0.0034	-0.0003	-0.0130
Bias Lower CI	-0.0126	-0.0047	-0.0006	-0.0165
Bias Upper CI	-0.0050	-0.0020	0.0000	-0.0087
Average calibration coefficient	0.9603	0.1185	0.0410	N/A
Calibration coefficient Lower CI	0.9049	0.1005	0.0307	N/A
Calibration coefficient Upper CI	1.0346	0.1407	0.0497	N/A

Table B-55 Option 1: Method 1 – Local model validation SEE and bias – repeated split sampling

Validation set	AC	Base	Subgrade	Total
v andation set	rutting	rutting	rutting	rutting
Average SEE	0.0797	0.0257	0.0216	0.0882
SEE Lower CI	0.0669	0.0151	0.0080	0.0730
SEE Upper CI	0.0920	0.0378	0.0364	0.1032
Average bias (in.)	-0.0090	-0.0033	-0.0004	-0.0127
Bias Lower CI	-0.0331	-0.0120	-0.0083	-0.0377
Bias Upper CI	0.0177	0.0051	0.0060	0.0168
Average calibration coefficient	0.9603	0.1185	0.0410	N/A
Calibration coefficient Lower CI	0.9049	0.1005	0.0307	N/A
Calibration coefficient Upper CI	1.0346	0.1407	0.0497	N/A

Figure B-91 Option 1: Method 1 repeated split sampling total rutting frequency distributions – calibration

Figure B-92 Option 1: Method 1 repeated split sampling total rutting frequency distributions – validation

Figure B-93 Option 1: Method 1 Total rutting residual plots - repeated split sampling

Figure B-94 Option 1: Method 1 HMA rutting residual plots - repeated split sampling

Figure B-95 Option 1: Method 1 Base rutting residual plots - repeated split sampling

Figure B-96 Option 1: Method 1 Subgrade rutting residual plots - repeated split sampling

Figure B-97 Option 1: Method 1 Rutting model validation residual plots – repeated split sampling

Figure B-98 Rutting model reliability – option 1 method 1 – repeated split sampling

Bootstrapping

Calibration	Average	SEE	SEE	Average bias	Bias	Bias
set	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0785	0.0706	0.0870	-0.0039	-0.0148	0.0068
Base rutting	0.1264	0.1146	0.1401	0.1110	0.1010	0.1219
Subgrade rutting	0.2240	0.2122	0.2360	0.2142	0.2031	0.2253
Total rutting	0.3425	0.3223	0.3654	0.3213	0.3026	0.3417

Table B-56 Option 1: Method 1 – Global model SEE and bias – bootstrapping

Table B-57 Option 1: Method 1 – Local model SEE and bias – bootstrapping

Calibration set	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0780	0.0258	0.0221	0.0865
SEE Lower CI	0.0702	0.0187	0.0092	0.0772
SEE Upper CI	0.0865	0.0333	0.0318	0.0962
Average bias (in.)	-0.0091	-0.0034	-0.0003	-0.0128
Bias Lower CI	-0.0152	-0.0056	-0.0008	-0.0188
Bias Upper CI	-0.0038	-0.0015	0.0001	-0.0073
Average calibration coefficient	0.9628	0.1190	0.0411	N/A
Calibration coefficient Lower CI	0.8721	0.0927	0.0277	N/A
Calibration coefficient Upper CI	1.0628	0.1479	0.0577	N/A

Figure B-99 Option 1: Method 1 bootstrapping total rutting frequency distributions – calibration

Figure B-100 Option 1: Method 1 Total rutting residual plots - bootstrapping

Figure B-101 Option 1: Method 1 HMA rutting residual plots - bootstrapping

Figure B-103 Option 1: Method 1 Subgrade rutting residual plots - bootstrapping

Figure B-104 Rutting model reliability – option 1 method 1 - bootstrapping

B.1.3.2 Option 1 – Method 2

No sampling

Table B-58 Option 1: Method 2 – Global model goodness of fit – no sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0786	-0.0037
Base rut	0.1267	0.1111
Subgrade	0.2242	0.2143
Total rut	0.3431	0.3217

Table B-59 Option 1: Method 2 – Global model *p*-values

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.3220	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

Table B-60 Option 1: Method 2 – Local model goodness of fit- no sampling

HMA layer	SEE	Bias
AC rut	0.1167	-0.0892
Base rut	0.0304	0.0109
Subgrade	0.0840	0.0775
Total rut	0.0812	-0.0009

 Table B-61 Option 1: Method 2 – Local model *p*-values– no sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0000	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.8142	0.0000	0.0000

 Table B-62 Option 1: Method 2 – Local model *p*-values– no sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.3738
Base rutting (bs1)	1.0000	0.2283
Subgrade rutting (bsg1)	1.0000	0.3886

Figure B-105 Option 1: Method 2 Total rutting local calibration results - no sampling

Figure B-106 Option 1: Method 2 HMA rutting local calibration results - no sampling

Figure B-107 Option 1: Method 2 Base rutting local calibration results - no sampling

Figure B-108 Option 1: Method 2 Subgrade rutting local calibration results - no sampling

Figure B-110 Option 1: Method 2 HMA rutting residual plots - no sampling

-1 -1 -1.5 -1.5 -2<u></u> -2° 0.05 0.25 0.05 0.25 0.1 0.15 0.2 0.3 0.1 0.15 0.2 0.3 Predicted subgrade rutting (inch) Predicted subgrade rutting (inch) (a) Global model (b) Local model

Figure B-112 Option 1: Method 2 Subgrade rutting residual plots - no sampling

Figure B-113 Rutting model reliability equations – option 1 method 2 – no sampling

Split sampling

Table B-63 Option 1: Method 2 – Global model goodness of fit – split sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0768	0.0003
Base rut	0.1293	0.1150
Subgrade	0.2220	0.2106
Total rut	0.3478	0.3259

Table B-64 Option 1: Method 2 – Global model p-values - split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.9481	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

 Table B-65 Option 1: Method 2 – Local model goodness of fit– split sampling

HMA layer	SEE	Bias
AC rut	0.1050	-0.0758
Base rut	0.0350	0.0199
Subgrade	0.0630	0.0543
Total rut	0.0806	-0.0016

 Table B-66 Option 1: Method 2 – Local model p-values– split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0000	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.7277	0.0000	0.0000

Table B-67 Option 1: Method 2 – Local model *p*-values – split sampling

	Local model p	values split
Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.4383
Base rutting (bs1)	1.0000	0.2832
Subgrade rutting (bsg1)	1.0000	0.2930

Table B-68 Option 1: Method 2 – Local model validation p-values – split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0000	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0170	0.0000	0.0000

HMA layer	SEE	Bias
AC rut	0.1210	-0.0908
Base rut	0.0352	0.0135
Subgrade	0.0630	0.0601
Total rut	0.0846	-0.0172

Table B-69 Option 1: Method 2 – Local model validation SEE and bias – split sampling

Figure B-114 Option 1: Method 2 Total rutting local calibration results - split sampling

Figure B-115 Option 1: Method 2 HMA rutting local calibration results - split sampling

Figure B-116 Option 1: Method 2 Base rutting local calibration results - split sampling

Figure B-117 Option 1: Method 2 Subgrade rutting local calibration results - split sampling

Figure B-118 Option 1: Method 1 Rutting model validation – split sampling

Figure B-119 Option 1: Method 2 Total rutting local calibration residual plots - split sampling

Figure B-120 Option 1: Method 2 HMA rutting local calibration residual plots - split sampling

Figure B-121 Option 1: Method 2 Base rutting local calibration residual plots - split sampling

Figure B-122 Option 1: Method 2 Subgrade rutting local calibration residual plots split sampling

Figure B-123 Option 1: Method 2 Rutting model validation residual plots – split sampling

Figure B-124 Rutting model reliability equations – option 1 method 2 – split sampling

Repeated split sampling

Global	Average	SEE	SEE	Average bias	Bias	Bias
Model	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0785	0.0730	0.0832	-0.0036	-0.0105	0.0033
Base rutting	0.1266	0.1171	0.1340	0.1109	0.1035	0.1181
Subgrade rutting	0.2244	0.2159	0.2311	0.2142	0.2069	0.2206
Total rutting	0.3433	0.3286	0.3567	0.3215	0.3090	0.3343

Table B-70 Option 1: Method 2 – Global model SEE and bias – repeated split sampling

Table B-71 Option 1: Method 2 – Local model SEE and bias – repeated split sampling

Calibration sat	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.1161	0.0314	0.0827	0.0810
SEE Lower CI	0.0947	0.0246	0.0599	0.0751
SEE Upper CI	0.1339	0.0407	0.1065	0.0857
Average bias (in.)	-0.0881	0.0113	0.0760	-0.0008
Bias Lower CI	-0.1088	-0.0042	0.0533	-0.0024
Bias Upper CI	-0.0603	0.0271	0.1010	0.0008
Average calibration coefficient	0.3820	0.2324	0.3824	N/A
Calibration coefficient Lower CI	0.2364	0.1122	0.2795	N/A
Calibration coefficient Upper CI	0.5922	0.3594	0.4970	N/A

Table B-72 Option 1: Method 2 – Local model validation SEE and bias – repeated split sampling

Validation set	AC	Base	Subgrade	Total
v andation set	rutting	rutting	rutting	rutting
Average SEE	0.1171	0.0316	0.0832	0.0829
SEE Lower CI	0.0925	0.0173	0.0592	0.0711
SEE Upper CI	0.1380	0.0495	0.1148	0.0960
Average bias (in.)	-0.0881	0.0117	0.0762	-0.0003
Bias Lower CI	-0.1106	-0.0047	0.0516	-0.0217
Bias Upper CI	-0.0547	0.0319	0.1070	0.0206
Average calibration coefficient	0.3820	0.2324	0.3824	N/A
Calibration coefficient Lower CI	0.2364	0.1122	0.2795	N/A
Calibration coefficient Upper CI	0.5922	0.3594	0.4970	N/A

Figure B-125 Option 1: Method 2 repeated split sampling total rutting frequency distributions – calibration

Figure B-126 Option 1: Method 2 repeated split sampling total rutting frequency distributions – validation

Figure B-127 Option 1: Method 2 Total rutting local calibration residual plots - repeated split sampling

Figure B-128 Option 1: Method 2 HMA rutting local calibration residual plots - repeated split sampling

Figure B-129 Option 1: Method 2 Base rutting local calibration residual plots - repeated split sampling

Figure B-130 Option 1: Method 2 Subgrade rutting local calibration residual plots - repeated split sampling

Figure B-131 Option 1: Method 2 Rutting model validation residual plots – repeated split sampling

Figure B-132 Rutting model reliability equations – option 1 method 2 – repeated split sampling

Bootstrapping

Calibration	Average	SEE	SEE	Average bias	Bias	Bias
set	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0783	0.0706	0.0870	-0.0035	-0.0148	0.0076
Base rutting	0.1265	0.1146	0.1397	0.1110	0.1008	0.1217
Subgrade rutting	0.2242	0.2130	0.2365	0.2143	0.2040	0.2258
Total rutting	0.3431	0.3211	0.3651	0.3218	0.3029	0.3414

Table B-73 Option 1: Method 2 – Global model SEE and bias – bootstrapping

Table B-74 Option 1: Method 2 – Local model SEE and bias – bootstrapping

Calibration sat	AC	Base	Subgrade	Total
Canoration set	rutting	rutting	rutting	rutting
Average SEE	0.1151	0.0314	0.0828	0.0804
SEE Lower CI	0.0853	0.0218	0.0484	0.0723
SEE Upper CI	0.1442	0.0457	0.1151	0.0890
Average bias (in.)	-0.0866	0.0098	0.0762	-0.0007
Bias Lower CI	-0.1206	-0.0112	0.0414	-0.0031
Bias Upper CI	-0.0458	0.0337	0.1085	0.0015
Average calibration coefficient	0.3932	0.2216	0.3833	N/A
Calibration coefficient Lower CI	0.1510	0.0654	0.2218	N/A
Calibration coefficient Upper CI	0.7001	0.4041	0.5354	N/A

Figure B-133 Option 1: Method 2 bootstrapping total rutting frequency distributions – calibration

Figure B-134 Option 1: Method 2 Total rutting local calibration residual plots bootstrapping

Figure B-135 Option 1: Method 2 HMA rutting local calibration residual plots - bootstrapping

Figure B-137 Option 1: Method 2 Subgrade rutting local calibration residual plots bootstrapping

Figure B-138 Rutting model reliability equations – option 1 method 2 – bootstrapping

B.1.3.3 Option 2 – Method 1

No sampling

Table B-75 Option 2: Method 1 – Global model goodness of fit – no sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0779	-0.0019
Base rut	0.1405	0.1160
Subgrade	0.2235	0.2100
Total rut	0.3574	0.3241

Table B-76 Option 2: Method 1 – Global model *p*-values

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.5505	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

Table B-77 Option 2: Method 1 – Local model goodness of fit- no sampling

HMA layer	SEE	Bias
AC rut	0.0774	-0.0099
Base rut	0.0258	-0.0051
Subgrade	0.0205	-0.0006
Total rut	0.0865	-0.0155

 Table B-78 Option 2: Method 1 – Local model *p*-values– no sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0021	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.5188	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

 Table B-79 Option 2: Method 1 – Local model *p*-values– no sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.9422
Base rutting (bs1)	1.0000	0.0974
Subgrade rutting (bsg1)	1.0000	0.0367

Figure B-139 Option 2: Method 1 – Total rutting local calibration results - no sampling

Figure B-140 Option 2: Method 1 – HMA rutting local calibration results - no sampling

Figure B-141 Option 2: Method 1 – Base rutting local calibration results - no sampling

Figure B-142 Option 2: Method 1 – Subgrade rutting local calibration results - no sampling

Figure B-143 Option 2: Method 1 – Total rutting residual plots - no sampling

Figure B-144 Option 2: Method 1 – HMA rutting residual plots - no sampling

Figure B-146 Option 2: Method 1 – Subgrade rutting residual plots ts - no sampling

Figure B-147 Rutting model reliability equations – option 2 method 1 – no sampling

Split sampling

Table B-80 Option 2: Method 1 – Global model goodness of fit – split sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0752	0.0002
Base rut	0.1391	0.1140
Subgrade	0.2275	0.2121
Total rut	0.3617	0.3264

Table B-81 Option 2: Method 1 – Global model p-values - split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.9510	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0003
Total rut	0.0000	0.0000	0.0000

 Table B-82 Option 2: Method 1 – Local model goodness of fit– split sampling

HMA layer	SEE	Bias
AC rut	0.0746	-0.0086
Base rut	0.0277	-0.0049
Subgrade	0.0200	-0.0004
Total rut	0.0843	-0.0140

 Table B-83 Option 2: Method 1 – Local model *p*-values– split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0207	0.0000	0.0000
Base rut	0.0003	0.0000	0.0000
Subgrade	0.6594	0.0000	0.0000
Total rut	0.0008	0.0000	0.0000

Table B-84 Option 2: Method 1 – Local model *p*-values – split sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.9372
Base rutting (bs1)	1.0000	0.1014
Subgrade rutting (bsg1)	1.0000	0.0348

Table B-85 Option 2: Method 1 – Local model validation p-values – split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0166	0.0000	0.0000
Base rut	0.0200	0.0000	0.0000
Subgrade	0.1916	0.0000	0.0000
Total rut	0.0024	0.0000	0.0000

HMA layer	SEE	Bias
AC rut	0.0842	-0.0151
Base rut	0.0208	-0.0036
Subgrade	0.0219	-0.0021
Total rut	0.0921	-0.0209

Table B-86 Option 2: Method 1 – Local model validation SEE and bias – split sampling

Figure B-148 Option 2 Method 1 Total rutting local calibration results - split sampling

Figure B-149 Option 2: Method 1 HMA rutting local calibration results - split sampling

Figure B-150 Option 2: Method 1 Base rutting local calibration results - split sampling

Figure B-151 Option 2 Method 1 Subgrade rutting local calibration results - split sampling

Figure B-152 Option 2: Method 1 – Rutting model validation – split sampling

Figure B-153 Option 2 Method 1 Total rutting residual plots - split sampling

Figure B-154 Option 2: Method 1 HMA rutting residual plots - split sampling

Figure B-156 Option 2 Method 1 Subgrade rutting residual plots - split sampling

Figure B-157 Option 2: Method 1 – Rutting model validation residual plots – split sampling

Figure B-158 Rutting model reliability equations – option 2 method 1 – split sampling

Repeated split sampling

Global	Average	SEE	SEE	Average bias	Bias	Bias
Model	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0779	0.0726	0.0822	-0.0021	-0.0088	0.0046
Base rutting	0.1403	0.1297	0.1499	0.1158	0.1079	0.1243
Subgrade rutting	0.2237	0.2168	0.2303	0.2100	0.2027	0.2174
Total rutting	0.3572	0.3419	0.3713	0.3237	0.3096	0.3382

Table B-87 Option 2: Method 1 – Global model SEE and bias – repeated split sampling

Table B-88 Option 2: Method 1 – Local model SEE and bias – repeated split sampling

Calibration sat	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0773	0.0258	0.0205	0.0864
SEE Lower CI	0.0723	0.0206	0.0132	0.0800
SEE Upper CI	0.0816	0.0290	0.0242	0.0916
Average bias (in.)	-0.0097	-0.0051	-0.0006	-0.0153
Bias Lower CI	-0.0124	-0.0063	-0.0008	-0.0184
Bias Upper CI	-0.0063	-0.0037	-0.0003	-0.0117
Average calibration coefficient	0.9451	0.0982	0.0368	N/A
Calibration coefficient Lower CI	0.8935	0.0822	0.0286	N/A
Calibration coefficient Upper CI	1.0084	0.1159	0.0443	N/A

Table B-89 Option 2: Method 1 – Local model validation SEE and bias – repeated split sampling

Validation set	AC	Base	Subgrade	Total
v andation set	rutting	rutting	rutting	rutting
Average SEE	0.0783	0.0254	0.0192	0.0872
SEE Lower CI	0.0676	0.0168	0.0082	0.0741
SEE Upper CI	0.0895	0.0352	0.0316	0.1007
Average bias (in.)	-0.0090	-0.0048	-0.0004	-0.0143
Bias Lower CI	-0.0301	-0.0123	-0.0065	-0.0367
Bias Upper CI	0.0135	0.0019	0.0049	0.0109
Average calibration coefficient	0.9451	0.0982	0.0368	N/A
Calibration coefficient Lower CI	0.8935	0.0822	0.0286	N/A
Calibration coefficient Upper CI	1.0084	0.1159	0.0443	N/A

Figure B-159 Option 2: Method 1 – repeated split sampling total rutting frequency distributions – calibration

Figure B-160 Option 2: Method 1 – repeated split sampling total rutting frequency distributions – validation

Figure B-161 Option 2 Method 1 Total rutting residual plots - repeated split sampling

Figure B-162 Option 2: Method 1 HMA rutting residual plots - repeated split sampling

Figure B-163 Option 2: Method 1 Base rutting residual plots - repeated split sampling

Figure B-164 Option 2 Method 1 Subgrade rutting residual plots - repeated split sampling

Figure B-165 Option 2: Method 1 – Rutting model validation residual plots – repeated split sampling

Figure B-166 Rutting model reliability equations – option 2 method 1 – repeated split sampling

Bootstrapping

Calibration	Average	SEE	SEE	Average bias	Bias	Bias
set	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0779	0.0708	0.0855	-0.0020	-0.0113	0.0082
Base rutting	0.1402	0.1253	0.1563	0.1160	0.1027	0.1294
Subgrade rutting	0.2236	0.2127	0.2349	0.2101	0.1981	0.2221
Total rutting	0.3572	0.3338	0.3815	0.3241	0.3010	0.3466

Table B-90 Option 2: Method 1 – Global model SEE and bias – bootstrapping

Table B-91 Option 2: Method 1 – Local model SEE and bias – bootstrapping

Calibration sat	AC	Base	Subgrade	Total
Canoration set	rutting	rutting	rutting	rutting
Average SEE	0.0772	0.0256	0.0200	0.0862
SEE Lower CI	0.0703	0.0198	0.0107	0.0774
SEE Upper CI	0.0845	0.0319	0.0287	0.0952
Average bias (in.)	-0.0096	-0.0050	-0.0005	-0.0152
Bias Lower CI	-0.0144	-0.0068	-0.0010	-0.0200
Bias Upper CI	-0.0054	-0.0032	-0.0002	-0.0106
Average calibration coefficient	0.9453	0.0985	0.0367	N/A
Calibration coefficient Lower CI	0.8655	0.0746	0.0252	N/A
Calibration coefficient Upper CI	1.0262	0.1257	0.0506	N/A

Figure B-167 Option 2: Method 1 – bootstrapping total rutting frequency distributions –calibration

Figure B-168 Option 2 Method 1 Total rutting residual plots - bootstrapping

Figure B-169 Option 2: Method 1 HMA rutting residual plots - bootstrapping

Figure B-170 Option 2: Method 1 Base rutting residual plots - bootstrapping

Figure B-171 Option 2 Method 1 Subgrade rutting residual plots - bootstrapping

Figure B-172 Rutting model reliability equations – option 2 method 1 – bootstrapping

B.1.3.4 Option 2 – Method 2

No sampling

Table B-92 Option 2: Method 2 – Global model goodness of fit – no sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0779	-0.0019
Base rut	0.1405	0.1160
Subgrade	0.2235	0.2100
Total rut	0.3574	0.3241

Table B-93 Option 2: Method 2 – Global model *p*-values

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.5505	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

Table B-94 Option 2: Method 2 – Local model goodness of fit- no sampling

HMA layer	SEE	Bias
AC rut	0.0906	-0.0533
Base rut	0.0279	-0.0144
Subgrade	0.0695	0.0623
Total rut	0.0830	-0.0055

 Table B-95 Option 2: Method 2 – Local model *p*-values– no sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0000	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.1103	0.0000	0.0000

 Table B-96 Option 2: Method 2 – Local model *p*-values– no sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.6251
Base rutting (bs1)	1.0000	0.0276
Subgrade rutting (bsg1)	1.0000	0.3241

Figure B-173 Option 2: Method 2 – Total rutting local calibration results - no sampling

Figure B-174 Option 2: Method 2 – HMA rutting local calibration results - no sampling

Figure B-175 Option 2: Method 2 – Base rutting local calibration results - no sampling

Figure B-176 Option 2: Method 2 – Subgrade rutting local calibration results - no sampling

Figure B-178 Option 2: Method 2 – HMA rutting residual plots - no sampling

Figure B-180 Option 2: Method 2 – Subgrade rutting residual plots - no sampling

0.3

0.25

-0.5

-1

-1.5

-2°

0.05

0.1

0.15

Predicted subgrade rutting (inch)

(b) Local model

0.2

0.25

0.3

-0.5

-1

-1.5

-2<u></u>

0.05

0.1

0.15

Predicted subgrade rutting (inch)

(a) Global model

0.2

Figure B-181 Rutting model reliability equations – option 2 method 2 – no sampling

Split sampling

Table B-97 Option 2: Method 2 – Global model goodness of fit – split sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0786	0.0028
Base rut	0.1335	0.1111
Subgrade	0.2271	0.2146
Total rut	0.3573	0.3285

Table B-98 Option 2: Method 2 – Global model p-values - split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.4768	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0000	0.0000	0.0000

Table B-99 Option 2: Method 2 – Local model goodness of fit-split sampling

HMA layer	SEE	Bias
AC rut	0.0971	-0.0646
Base rut	0.0256	-0.0063
Subgrade	0.0728	0.0666
Total rut	0.0813	-0.0042

 Table B-100 Option 2: Method 2 – Local model p-values- split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0000	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.2936	0.0000	0.0000

 Table B-101 Option 2: Method 2 – Local model p-values – split sampling

of Option 2. We though $2 = 10$ call model p -values $=$ split					
Calibration Coefficient	Global model	Local model			
HMA rutting (br1)	1.0000	0.5100			
Base rutting (bs1)	1.0000	0.1006			
Subgrade rutting (bsg1)	1.0000	0.3367			

Table B-102 Option 2: Method 2 – Local model validation p-values – split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0000	0.0000	0.0000
Base rut	0.7072	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0036	0.0000	0.0000

samplingHMA layerSEEBiasAC rut0.1086-0.0798Base rut0.02640.0008

Table B-103 Option 2: Method 2 – Local model validation SEE and bias – split

Figure B-182 Option 2: Method 2 – Total rutting local calibration results - split sampling

Figure B-183 Option 2: Method 2 – HMA rutting local calibration results - split sampling

Figure B-184 Option 2: Method 2 – Base rutting local calibration results - split sampling

Figure B-185 Option 2: Method 2 – Subgrade rutting local calibration results - split sampling

Figure B-186 Option 2: Method 2 – Rutting model validation – split sampling

Figure B-187 Option 2: Method 2 – Total rutting residual plots - split sampling

Figure B-188 Option 2: Method 2 – HMA rutting residual plots - split sampling

Figure B-190 Option 2: Method 2 – Subgrade rutting residual plots - split sampling

Figure B-191 Option 2: Method 2 – Rutting model validation residual plots – split sampling

Figure B-192 Rutting model reliability equations – option 2 method 2 – split sampling

Repeated split sampling

• 0						
Global	Average	SEE	SEE	Average bias	Bias	Bias
Model	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0781	0.0731	0.0825	-0.0018	-0.0083	0.0048
Base rutting	0.1405	0.1293	0.1498	0.1161	0.1072	0.1242
Subgrade rutting	0.2237	0.2162	0.2307	0.2100	0.2026	0.2178
Total rutting	0.3578	0.3420	0.3726	0.3243	0.3088	0.3392

Table B-104 Option 2: Method 2 – Global model SEE and bias – repeated split sampling

 Table B-105 Option 2: Method 2 – Local model SEE and bias – repeated split sampling

Calibration set	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0915	0.0275	0.0693	0.0829
SEE Lower CI	0.0789	0.0215	0.0476	0.0776
SEE Upper CI	0.1055	0.0320	0.0904	0.0876
Average bias (in.)	-0.0542	-0.0131	0.0619	-0.0054
Bias Lower CI	-0.0746	-0.0184	0.0387	-0.0075
Bias Upper CI	-0.0308	-0.0033	0.0832	-0.0030
Average calibration coefficient	0.6193	0.0377	0.3224	N/A
Calibration coefficient Lower CI	0.4725	0.0100	0.2204	N/A
Calibration coefficient Upper CI	0.8116	0.1068	0.4164	N/A

Table B-106 Option 2: Method 2 - Local model validation SEE and bias - repeated
split sampling

Validation set	AC	Base	Subgrade	Total
v andation set	rutting	rutting	rutting	rutting
Average SEE	0.0923	0.0276	0.0695	0.0844
SEE Lower CI	0.0770	0.0185	0.0467	0.0725
SEE Upper CI	0.1096	0.0374	0.0936	0.0964
Average bias (in.)	-0.0540	-0.0131	0.0618	-0.0054
Bias Lower CI	-0.0793	-0.0209	0.0398	-0.0259
Bias Upper CI	-0.0197	-0.0020	0.0843	0.0161
Average calibration coefficient	0.6193	0.0377	0.3224	N/A
Calibration coefficient Lower CI	0.4725	0.0100	0.2204	N/A
Calibration coefficient Upper CI	0.8116	0.1068	0.4164	N/A

Figure B-193 Option 2: Method 2 – repeated split sampling total rutting frequency distributions – calibration

Figure B-194 Option 2: Method 2 – repeated split sampling total rutting frequency distributions – validation

Figure B-195 Option 2: Method 2 – Total rutting residual plots – repeated split sampling

Figure B-196 Option 2: Method 2 – HMA rutting residual plots - repeated split sampling

Figure B-197 Option 2: Method 2 – Base rutting residual plots - repeated split sampling

Figure B-198 Option 2: Method 2 – Subgrade rutting residual plots - repeated split sampling

Figure B-199 Option 2: Method 2 – Rutting model validation residual plots – repeated split sampling

Figure B-200 Rutting model reliability equations – option 2 method 2 – repeated split sampling

Bootstrapping

Calibration	Average	SEE	SEE	Average bias	Bias	Bias
set	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0779	0.0709	0.0852	-0.0019	-0.0116	0.0079
Base rutting	0.1403	0.1241	0.1577	0.1163	0.1034	0.1305
Subgrade rutting	0.2234	0.2125	0.2351	0.2100	0.1982	0.2220
Total rutting	0.3574	0.3344	0.3799	0.3244	0.3011	0.3479

Table B-107 Option 2: Method 2 – Global model SEE and bias – bootstrapping

Table B-108	3 Option 2: Method 2	- Local model SEE	and bias – bootstrapping
-------------	-----------------------------	-------------------	--------------------------

Calibration set	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0919	0.0271	0.0684	0.0823
SEE Lower CI	0.0743	0.0205	0.0364	0.0749
SEE Upper CI	0.1125	0.0344	0.0959	0.0902
Average bias (in.)	-0.0543	-0.0120	0.0611	-0.0051
Bias Lower CI	-0.0838	-0.0195	0.0289	-0.0086
Bias Upper CI	-0.0204	0.0025	0.0885	-0.0021
Average calibration coefficient	0.6201	0.0449	0.3184	N/A
Calibration coefficient Lower CI	0.4031	0.0100	0.1729	N/A
Calibration coefficient Upper CI	0.8857	0.1538	0.4424	N/A

Figure B-201 Option 2: Method 2 – bootstrapping total rutting frequency distributions –calibration

Figure B-202 Option 2: Method 2 – Total rutting residual plots – bootstrapping

Figure B-203 Option 2: Method 2 – HMA rutting residual plots - bootstrapping

Figure B-204 Option 2: Method 2 – Base rutting residual plots - bootstrapping

Figure B-205 Option 2: Method 2 – Subgrade rutting residual plots - bootstrapping

Figure B-206 Rutting model reliability equations – option 2 method 2 – bootstrapping

B.1.3.5 Option 4 – Method 1

No sampling

Table B-109 Option 4: Method 1 – Global model goodness of fit – no sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0763	0.0038
Base rut	0.1797	0.1323
Subgrade	0.2230	0.1959
Total rut	0.4035	0.3320

Table B-110 Option 4: Method 1 – Global model p-values

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.5589	0.0000	0.0000
Base rut	0.0000	0.0000	0.0005
Subgrade	0.0000	0.0000	0.1369
Total rut	0.0000	0.0000	0.0039

Table B-111 Option 4: Method 1 – Local model goodness of fit– no sampling

HMA layer	SEE	Bias
AC rut	0.0746	-0.0113
Base rut	0.0231	-0.0072
Subgrade	0.0096	-0.0012
Total rut	0.0828	-0.0197

 Table B-112 Option 4: Method 1 – Local model *p*-values– no sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0756	0.0000	0.0000
Base rut	0.0002	0.0000	0.0000
Subgrade	0.1610	0.0000	0.0000
Total rut	0.0050	0.0000	0.0000

 Table B-113 Option 4: Method 1 – Local model *p*-values– no sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.8909
Base rutting (bs1)	1.0000	0.0597
Subgrade rutting (bsg1)	1.0000	0.0216

Figure B-207 Option 4: Method 1 – Total rutting local calibration results - no sampling

Figure B-208 Option 4: Method 1 – HMA rutting local calibration results - no sampling

Figure B-209 Option 4: Method 1 – Base rutting local calibration results - no sampling

Figure B-210 Option 4: Method 1 – Subgrade rutting local calibration results - no sampling

Figure B-211 Option 4: Method 1 – Total rutting residual plots - no sampling

Figure B-212 Option 4: Method 1 – HMA rutting residual plots - no sampling

Figure B-214 Option 4: Method 1 – Subgrade rutting residual plots - no sampling

Figure B-215 Rutting model reliability equations – option 4 method 1 – no sampling

Split sampling

Table B-114 Option 4: Method 1 – Global model goodness of fit – split sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0791	0.0004
Base rut	0.1873	0.1356
Subgrade	0.2236	0.1915
Total rut	0.4145	0.3275

Table B-115 Option 4: Method 1 – Global model *p*-values - split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.9591	0.0000	0.0000
Base rut	0.0000	0.0000	0.0056
Subgrade	0.0000	0.0000	0.0446
Total rut	0.0000	0.0000	0.0030

Table B-116 Option 4: Method 1 – Local model goodness of fit– split sampling

HMA layer	SEE	Bias
AC rut	0.0780	-0.0118
Base rut	0.0263	-0.0082
Subgrade	0.0112	-0.0018
Total rut	0.0877	-0.0218

 Table B-117 Option 4: Method 1 – Local model p-values- split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.1472	0.0000	0.0000
Base rut	0.0025	0.0000	0.0000
Subgrade	0.1161	0.0000	0.0000
Total rut	0.0161	0.0000	0.0000

 Table B-118 Option 4: Method 1 – Local model p-values – split sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.9108
Base rutting (bs1)	1.0000	0.0678
Subgrade rutting (bsg1)	1.0000	0.0223

Table B-119 Option 4: Method 1 – Local model validation p-values – split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.8408	0.0000	0.0000
Base rut	0.4581	0.0000	0.0000
Subgrade	0.4242	0.0000	0.0000
Total rut	0.7720	0.0000	0.0000

HMA layer	SEE	Bias
AC rut	0.0691	-0.0021
Base rut	0.0156	-0.0017
Subgrade	0.0053	0.0006
Total rut	0.0731	-0.0031

 Table B-120 Option 4: Method 1 – Local model validation SEE and bias – split sampling

Figure B-216 Option 4: Method 1 – Total rutting local calibration results - split sampling

Figure B-217 Option 4: Method 1 – HMA rutting local calibration results - split sampling

Figure B-218 Option 4: Method 1 – Base rutting local calibration results - split sampling

Figure B-219 Option 4: Method 1 – Subgrade rutting local calibration results - split sampling

Figure B-220 Option 4: Method 1 – Rutting model validation – split sampling

Figure B-221 Option 4: Method 1 – Total rutting residual plots - split sampling

Figure B-222 Option 4: Method 1 – HMA rutting residual plots - split sampling

Figure B-224 Option 4: Method 1 – Subgrade rutting residual plots - split sampling

Figure B-225 Option 4: Method 1 – Rutting model validation residual plots – split sampling

Figure B-226 Rutting model reliability equations – option 4 method 1 – split sampling

Repeated split sampling

			1 0			
Global	Average	SEE	SEE	Average bias	Bias	Bias
Model	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0764	0.0657	0.0850	0.0034	-0.0117	0.0163
Base rutting	0.1801	0.1485	0.2054	0.1325	0.1027	0.1600
Subgrade rutting	0.2234	0.2053	0.2401	0.1957	0.1744	0.2180
Total rutting	0.4042	0.3560	0.4415	0.3317	0.2811	0.3808

Table B-121 Option 4: Method 1 – Global model SEE and bias – repeated split sampling

 Table B-122 Option 4: Method 1 – Local model SEE and bias – repeated split sampling

Calibration set	AC	Base	Subgrade	Total
	rutting	rutting	rutting	rutting
Average SEE	0.0742	0.0228	0.0094	0.0823
SEE Lower CI	0.0650	0.0170	0.0052	0.0708
SEE Upper CI	0.0821	0.0265	0.0114	0.0921
Average bias (in.)	-0.0110	-0.0072	-0.0011	-0.0193
Bias Lower CI	-0.0155	-0.0095	-0.0018	-0.0247
Bias Upper CI	-0.0050	-0.0048	-0.0004	-0.0135
Average calibration coefficient	0.8979	0.0601	0.0217	N/A
Calibration coefficient Lower CI	0.8091	0.0313	0.0121	N/A
Calibration coefficient Upper CI	1.0260	0.0909	0.0299	N/A

Table B-123 Option 4: Method 1 – Local model validation SEE and bias – repeated split
sampling

Validation set	AC	Base	Subgrade	Total
	rutting	rutting	rutting	rutting
Average SEE	0.0780	0.0239	0.0094	0.0862
SEE Lower CI	0.0559	0.0133	0.0047	0.0604
SEE Upper CI	0.0991	0.0350	0.0163	0.1109
Average bias (in.)	-0.0099	-0.0072	-0.0011	-0.0183
Bias Lower CI	-0.0532	-0.0222	-0.0083	-0.0614
Bias Upper CI	0.0391	0.0085	0.0049	0.0321
Average calibration coefficient	0.8979	0.0601	0.0217	N/A
Calibration coefficient Lower CI	0.8091	0.0313	0.0121	N/A
Calibration coefficient Upper CI	1.0260	0.0909	0.0299	N/A

Figure B-227 Option 4: Method 1 – repeated split sampling total rutting frequency distributions – calibration

Figure B-228 Option 4: Method 1 – repeated split sampling total rutting frequency distributions – validation

Figure B-229 Option 4: Method 1 – Total rutting residual plots – repeated split sampling

Figure B-230 Option 4: Method 1 – HMA rutting residual plots - repeated split sampling

Figure B-231 Option 4: Method 1 – Base rutting residual plots - repeated split sampling

Figure B-232 Option 4: Method 1 – Subgrade rutting residual plots - repeated split sampling

Figure B-233 Option 4: Method 1 – Rutting model validation residual plots – repeated split sampling

Figure B-234 Rutting model reliability equations – option 4 method 1 – repeated split sampling

Bootstrapping

Calibration	Average	SEE	SEE	Average bias	Bias	Bias
set	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0762	0.0624	0.0912	0.0030	-0.0176	0.0253
Base rutting	0.1789	0.1350	0.2213	0.1324	0.0886	0.1766
Subgrade rutting	0.2228	0.1964	0.2502	0.1958	0.1635	0.2305
Total rutting	0.4029	0.3402	0.4669	0.3313	0.2559	0.4090

Table B-124 Option 4: Method 1 – Global model SEE and bias – bootstrapping

Table B-125 Option 4: Method 1 – Local model SEE and bias – bootstrapping

Calibration sat	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0737	0.0225	0.0092	0.0817
SEE Lower CI	0.0609	0.0157	0.0046	0.0657
SEE Upper CI	0.0885	0.0293	0.0134	0.0979
Average bias (in.)	-0.0109	-0.0071	-0.0011	-0.0191
Bias Lower CI	-0.0179	-0.0109	-0.0021	-0.0276
Bias Upper CI	-0.0032	-0.0037	-0.0002	-0.0110
Average calibration coefficient	0.9032	0.0612	0.0216	N/A
Calibration coefficient Lower CI	0.7529	0.0273	0.0107	N/A
Calibration coefficient Upper CI	1.0876	0.1114	0.0352	N/A

Figure B-235 Option 4: Method 1 – bootstrapping total rutting frequency distributions –calibration

Figure B-236 Option 4: Method 1 – Total rutting residual plots – bootstrapping

Figure B-237 Option 4: Method 1 – HMA rutting residual plots - bootstrapping

Figure B-239 Option 4: Method 1 – Subgrade rutting residual plots - bootstrapping

Figure B-240 Rutting model reliability equations – option 4 method 1 – bootstrapping

B.1.3.6 Option 4 – Method 2

No sampling

Table B-126 Option 4: Method 2 – Global model goodness of fit – no sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0763	0.0038
Base rut	0.1797	0.1323
Subgrade	0.2230	0.1959
Total rut	0.4035	0.3320

Table B-127 Option 4: Method 2 – Global model p-values

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.5589	0.0000	0.0000
Base rut	0.0000	0.0000	0.0005
Subgrade	0.0000	0.0000	0.1369
Total rut	0.0000	0.0000	0.0039

Table B-128 Option 4: Method 2 – Local model goodness of fit- no sampling

HMA layer	SEE	Bias
AC rut	0.0746	-0.0116
Base rut	0.0249	-0.0146
Subgrade	0.0211	0.0154
Total rut	0.0814	-0.0108

 Table B-129 Option 4: Method 2 – Local model *p*-values– no sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0684	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.1225	0.0000	0.0000

 Table B-130 Option 4: Method 2 – Local model *p*-values– no sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.8888
Base rutting (bs1)	1.0000	0.0100
Subgrade rutting (bsg1)	1.0000	0.1040

Figure B-241 Option 4: Method 2 – Total rutting local calibration results - no sampling

Figure B-242 Option 4: Method 2 – HMA rutting local calibration results - no sampling

Figure B-243 Option 4: Method 2 – Base rutting local calibration results - no sampling

Figure B-244 Option 4: Method 2 – Subgrade rutting local calibration results - no sampling

Figure B-245 Option 4: Method 2 – Total rutting residual plots - no sampling

Figure B-246 Option 4: Method 2 – HMA rutting residual plots - no sampling

Figure B-248 Option 4: Method 2 – Subgrade rutting residual plots - no sampling

Figure B-249 Rutting model reliability equations – option 4 method 2 – no sampling

Split sampling

Table B-131 Option 4: Method 2 – Global model goodness of fit – split sampling

HMA layer	SEE (in.)	Bias (in.)
AC rut	0.0793	0.0109
Base rut	0.1691	0.1240
Subgrade	0.2055	0.1730
Total rut	0.3852	0.3079

Table B-132 Option 4: Method 2 – Global model *p*-values - split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.1860	0.0000	0.0000
Base rut	0.0000	0.0000	0.0377
Subgrade	0.0000	0.0000	0.2417
Total rut	0.0000	0.0000	0.0127

Table B-133 Option 4: Method 2 – Local model goodness of fit- split sampling

HMA layer	SEE	Bias
AC rut	0.0769	0.0010
Base rut	0.0258	-0.0134
Subgrade	0.0123	0.0032
Total rut	0.0800	-0.0092

 Table B-134 Option 4: Method 2 – Local model p-values- split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.9021	0.0000	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0109	0.0000	0.0000
Total rut	0.2707	0.0000	0.0000

 Table B-135 Option 4: Method 2 – Local model p-values – split sampling

Calibration Coefficient	Global model	Local model
HMA rutting (br1)	1.0000	0.9277
Base rutting (bs1)	1.0000	0.0100
Subgrade rutting (bsg1)	1.0000	0.0506

Table B-136 Option 4: Method 2 – Local model validation p-values – split sampling

HMA layer	t-test p-value	Intercept p-value	Slope = 1 p-value
AC rut	0.0448	0.0002	0.0000
Base rut	0.0000	0.0000	0.0000
Subgrade	0.0000	0.0000	0.0000
Total rut	0.0160	0.0000	0.0000

HMA layer	SEE	Bias
AC rut	0.0718	-0.0211
Base rut	0.0237	-0.0171
Subgrade	0.0106	0.0077
Total rut	0.0873	-0.0305

 Table B-137 Option 4: Method 2 – Local model validation SEE and bias – split sampling

Figure B-250 Option 4: Method 2 – Total rutting local calibration results - split sampling

Figure B-251 Option 4: Method 2 – HMA rutting local calibration results - split sampling

Figure B-252 Option 4: Method 2 – Base rutting local calibration results - split sampling

Figure B-253 Option 4: Method 2 – Subgrade rutting local calibration results - split sampling

Figure B-254 Option 4: Method 2 – Rutting model validation – split sampling

Figure B-255 Option 4: Method 2 – Total rutting residual plots - split sampling

Figure B-256 Option 4: Method 2 – HMA rutting residual plots - split sampling

Figure B-257 Option 4: Method 2 – Base rutting residual plots - split sampling

Figure B-258 Option 4: Method 2 – Subgrade rutting residual plots - split sampling

Figure B-259 Option 4: Method 2 – Rutting model validation residual plots – split sampling

Figure B-260 Rutting model reliability equations – option 4 method 2 – split sampling

Repeated split sampling

sampling							
Global	Average	SEE	SEE	Average bias	Bias	Bias	
Model	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI	
AC rutting	0.0767	0.0651	0.0849	0.0038	-0.0123	0.0171	
Base rutting	0.1802	0.1475	0.2045	0.1325	0.1027	0.1588	
Subgrade rutting	0.2236	0.2060	0.2408	0.1959	0.1745	0.2192	
Total rutting	0.4047	0.3592	0.4422	0.3322	0.2838	0.3802	

Table B-138 Option 4: Method 2 – Global model SEE and bias – repeated split compliance

Table B-139 Option 4: Method 2 – Local model SEE and bias – repeated split sampling

Calibration set	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0760	0.0247	0.0237	0.0807
SEE Lower CI	0.0660	0.0177	0.0084	0.0683
SEE Upper CI	0.0832	0.0293	0.0500	0.0908
Average bias (in.)	-0.0120	-0.0144	0.0162	-0.0102
Bias Lower CI	-0.0410	-0.0186	-0.0050	-0.0160
Bias Upper CI	0.0164	-0.0095	0.0440	-0.0034
Average calibration coefficient	0.8898	0.0105	0.1065	N/A
Calibration coefficient Lower CI	0.6397	0.0100	0.0100	N/A
Calibration coefficient Upper CI	1.1789	0.0133	0.2331	N/A

Table B-140 Option 4: Method 2 – Local model validation SEE and bias – repeated split sampling

samping						
Validation set	AC	Base	Subgrade	Total		
valuation set	rutting	rutting	rutting	rutting		
Average SEE	0.0810	0.0244	0.0231	0.0865		
SEE Lower CI	0.0566	0.0120	0.0040	0.0580		
SEE Upper CI	0.1121	0.0375	0.0499	0.1150		
Average bias (in.)	-0.0112	-0.0147	0.0152	-0.0106		
Bias Lower CI	-0.0649	-0.0250	-0.0053	-0.0538		
Bias Upper CI	0.0599	-0.0055	0.0390	0.0484		
Average calibration coefficient	0.8898	0.0105	0.1065	N/A		
Calibration coefficient Lower CI	0.6397	0.0100	0.0100	N/A		
Calibration coefficient Upper CI	1.1789	0.0133	0.2331	N/A		

Figure B-261 Option 4: Method 2 – repeated split sampling total rutting frequency distributions – calibration

Figure B-262 Option 4: Method 2 – repeated split sampling total rutting frequency distributions – validation

Figure B-263 Option 4: Method 2 – Total rutting residual plots – repeated split sampling

Figure B-264 Option 4: Method 2 – HMA rutting residual plots - repeated split sampling

Figure B-265 Option 4: Method 2 – Base rutting residual plots - repeated split sampling

Figure B-266 Option 4: Method 2 – Subgrade rutting residual plots - repeated split sampling

Figure B-267 Option 4: Method 2 – Rutting model validation residual plots – repeated split sampling

Figure B-268 Rutting model reliability equations – option 4 method 2 – repeated split sampling

Bootstrapping

Calibration	Average	SEE	SEE	Average bias	Bias	Bias
set	SEE	Lower CI	Upper CI	(in.)	Lower CI	Upper CI
AC rutting	0.0760	0.0612	0.0904	0.0032	-0.0187	0.0259
Base rutting	0.1788	0.1342	0.2189	0.1327	0.0901	0.1740
Subgrade rutting	0.2221	0.1943	0.2514	0.1954	0.1607	0.2316
Total rutting	0.4021	0.3390	0.4609	0.3313	0.2551	0.4031

 Table B-141 Option 4: Method 2 – Global model SEE and bias – bootstrapping

Table B-142 Option 4: Method 2 – Local model SEE and bias – bootstrapping

Calibration sat	AC	Base	Subgrade	Total
Calibration set	rutting	rutting	rutting	rutting
Average SEE	0.0758	0.0245	0.0236	0.0796
SEE Lower CI	0.0614	0.0163	0.0060	0.0644
SEE Upper CI	0.0905	0.0336	0.0628	0.0963
Average bias (in.)	-0.0110	-0.0141	0.0153	-0.0098
Bias Lower CI	-0.0538	-0.0214	-0.0058	-0.0181
Bias Upper CI	0.0173	-0.0067	0.0571	-0.0019
Average calibration coefficient	0.9042	0.0129	0.1011	N/A
Calibration coefficient Lower CI	0.5475	0.0100	0.0100	N/A
Calibration coefficient Upper CI	1.2275	0.0520	0.2866	N/A

Figure B-269 Option 4: Method 2 – bootstrapping total rutting frequency distributions –calibration

Figure B-270 Option 4: Method 2 – Total rutting residual plots - bootstrapping

Figure B-271 Option 4: Method 2 – HMA rutting residual plots - bootstrapping

Figure B-272 Option 4: Method 2 – Base rutting residual plots - bootstrapping

Figure B-273 Option 4: Method 2 – Subgrade rutting residual plots - bootstrapping

Figure B-274 Rutting model reliability equations – option 4 method 2 – bootstrapping

B.1.4 Transverse Cracking Model

B.1.4.1 Level 1

Option 1

Parameter	SEE	Bias
Global model Level 1	1343.58	903.06
K = 0.5 Level 1	767.05	-217.64
K = 0.75 Level 1	753.24	-70.40
K = 1 Level 1	943.39	246.75
K = 1.1 Level 1	1019.15	369.83
K = 1.2 Level 1	1094.84	492.97
K = 1.3 Level 1	1176.40	630.50
K = 1.4 Level 1	1277.75	783.51
K = 1.7 Level 1	1459.76	1109.90
K = 2 Level 1	1560.47	1310.64
K = 2.5 Level 1	1692.66	1553.99

Figure B-275 Level 1 thermal cracking global model – option 1

Figure B-276 Level 1 thermal cracking local model K = 0.5 – option 1

Figure B-277 Level 1 thermal cracking local model K = 0.75 – option 1

Figure B-278 Level 1 thermal cracking local model K = 1 – option 1

Figure B-279 Level 1 thermal cracking local model K = 1.1 – option 1

Figure B-280 Level 1 thermal cracking local model K = 1.2 – option 1

Figure B-281 Level 1 thermal cracking local model K = 1.3 – option 1

Figure B-282 Level 1 thermal cracking local model K = 1.4 – option 1

Figure B-283 Level 1 thermal cracking local model K = 1.7 – option 1

Figure B-284 Level 1 thermal cracking local model K = 2 – option 1

Figure B-285 Level 1 thermal cracking local model K = 2.5– option 1

Data set option	Global model equation	Local model equation
Option 1	$s_e(Level1) = 0.1468(TC) + 65.027$	$s_e(Level1) = 0.4203(TC) + 216.94$

Table B-144 Level 1 Option 1 reliability equation

Figure B-286 Level 1 Option 1 thermal cracking fitted reliability model

Option 2

Parameter	SEE	Bias
Global model Level 1	1306.5	854.7
K = 0.5 Level 1	745.5	-212.6
K = 0.75 Level 1	732.1	-73.8
K = 1 Level 1	916.4	225.1
K = 1.1 Level 1	989.9	341.2
K = 1.2 Level 1	1063.2	457.5
K = 1.3 Level 1	1142.3	588.4
K = 1.4 Level 1	1241.0	736.0
K = 1.7 Level 1	1425.3	1064.9
K = 2 Level 1	1529.4	1271.1
K = 2.5 Level 1	1667.5	1524.3

Table B-145 Level 1 Option 2 thermal cracking results

Figure B-287 Level 1 thermal cracking global model – option 2

Figure B-288 Level 1 thermal cracking local model K = 0.5 – option 2

Figure B-289 Level 1 thermal cracking local model K = 0.75 - option 2

Figure B-290 Level 1 thermal cracking local model K = 1 – option 2

Figure B-291 Level 1 thermal cracking local model K = 1.1 – option 2

Figure B-292 Level 1 thermal cracking local model K = 1.2 – option 2

Figure B-293 Level 1 thermal cracking local model K = 1.3 – option 2

Figure B-294 Level 1 thermal cracking local model K = 1.4 – option 2

Figure B-295 Level 1 thermal cracking local model K = 1.7 – option 2

Figure B-296 Level 1 thermal cracking local model K = 2 – option 2

Figure B-297 Level 1 thermal cracking local model K = 2.5 – option 2

Table B-146 Level 1 Option 2 reliability equation

Data set option	Global model equation	Local model equation
Option 2	$s_e(Level1) = 0.1468(TC) + 65.027$	$s_e(Level1) = 0.4258(TC) + 210.08$

Figure B-298 Level 1 Option 2 thermal cracking fitted reliability model

B.1.4.2 Level 3

Option 1

Table B-147 Level 3 Option 1 thermal cracking results

Figure B-299 Level 3 thermal cracking global model – option 1

Figure B-300 Level 3 thermal cracking local model K = 2 – option 1

Figure B-301 Level 3 thermal cracking local model K = 3 – option 1

Figure B-302 Level 3 thermal cracking local model K =4 – option 1

Figure B-303 Level 3 thermal cracking local model K = 5 – option 1

Data set option	Global model equation	Local model equation
Option 1	$s_e(Level3) = 0.3972(TC) + 20.422$	$s_e(Level3) = 0.142(TC) + 670.28$

Table B-148 Level 3 Option 1 reliability equation

Figure B-304 Level 3 Option 1 thermal cracking fitted reliability model

Option 2

Parameter	SEE	Bias
Global model Level 3	945.0	-489.0
K = 2 Level 3	965.6	-416.2
K = 3 Level 3	1022.4	-209.6
K = 4 Level 3	1057.7	35.3
K = 5 Level 3	1121.8	289.6

Table B-149 Level 3 Option 2 thermal cracking results

Figure B-305 Level 3 thermal cracking global model – option 2

Figure B-306 Level 3 thermal cracking local model K = 2 – option 2

Figure B-307 Level 3 thermal cracking local model K = 3 – option 2

Figure B-308 Level 3 thermal cracking local model K =4 – option 2

Figure B-309 Level 3 thermal cracking local model K = 5 – option 2

Table B-150 Level 3 Option 2 reliability equation

Data set option	Global model equation	Local model equation
Option 2	$s_e(Level3) = 0.3972(TC) + 20.422$	$s_e(Level3) = 0.7737(TC) + 622.92$

Figure B-310 Level 3 Option 2 thermal cracking fitted reliability model

Option 4

Table B-151 Level 3 Option 4 thermal cracking results

Parameter	SEE	Bias
Global model Level 3	1304.7	-906.6
K = 2 Level 3	1312.1	-824.0
K = 3 Level 3	1334.6	-666.1
K = 4 Level 3	1237.6	-451.0
K = 5 Level 3	1163.8	-212.0

Figure B-311 Level 3 thermal cracking global model – option 3

Figure B-312 Level 3 thermal cracking local model K = 2 – option 3

Figure B-313 Level 3 thermal cracking local model K = 3 – option 3

Figure B-314 Level 3 thermal cracking local model K =4 – option 3

Figure B-315 Level 3 thermal cracking local model K = 5 – option 3

Table B-152 Level 3 Option 4 reliability equation

Data set option	Global model equation	Local model equation
Option 4	$s_e(Level3) = 0.3972(TC) + 20.422$	$s_e(Level3) = 0.7039(TC) + 324.26$

Figure B-316 Level 3 Option 4 thermal cracking fitted reliability model

B.1.5 Pavement Roughness (IRI)

B.1.5.1 Option 1

No sampling

Parameter	Global	Local
SEE	14.8261	14.1044
Bias	2.7552	0.0070
R^2	0.6922	0.7228
t-test pvalue	0.0003	0.9923
Intercept $= 0$	0.0000	0.0000
Slope = 1	0.0000	0.0000
C1	40.0000	48.5626
C2	0.4000	0.4781
C3	0.0080	0.0064
$\overline{C4}$	0.0150	0.0072

Figure B-317 Option 1 IRI local calibration measured versus predicted – no sampling

Figure B-318 Option 1 IRI local calibration residual plots – no sampling

Split sampling

Parameter	Global model	Local model	Validation
SEE	14.9090	14.1483	14.1497
Bias	2.4035	0.0973	0.5702
R^2	0.6945	0.7280	0.7129
t-test pvalue	0.0108	0.9140	0.6515
Intercept $= 0$	0.0000	0.0000	0.0000
Slope = 1	0.0000	0.0000	0.0000
C1	40.0000	52.8662	52.8662
C2	0.4000	0.3535	0.3535
C3	0.0080	0.0064	0.0064
C4	0.0150	0.0071	0.0071

Table B-154 Option 1 IRI local calibration results – split sampling

Figure B-319 Option 1 IRI local calibration measured versus predicted – split sampling

Figure B-320 Option 1 IRI local calibration residual plots – split sampling

Repeated split sampling

Global Model				
Daramatar	Global Model	Global Model	Global model	Global model
	Mean	Median	lower CI	upper CI
SEE	14.8176	14.8629	13.3900	15.9512
Bias	2.7282	2.7679	1.0972	4.2236
C1	40.0000	40.0000	-	-
C2	0.4000	0.4000	-	-
C3	0.0080	0.0080	-	-
C4	0.0150	0.0150	-	-
		Local Model		
Daramatar	Local Model	Local Model	Local model lower	Local model
r ai ailietei	Mean	Median	CI	upper CI
SEE	14.0562	14.1138	12.3621	15.3295
Bias	0.0294	0.0213	-0.4797	0.6616
C1	50.8200	50.8000	41.8300	57.8000
C2	0.4088	0.4693	0.3200	0.4800
C3	0.0064	0.0064	0.0064	0.0070
C4	0.0070	0.0072	0.0053	0.0072
	Lo	ocal Model validatio	n	
Doromotor	Local Model	Local Model	Local model	Local model
Farameter	Mean	Median	lower CI	upper CI
SEE	14.2948	14.3197	10.9564	17.7144
Bias	0.1403	0.1667	-4.5686	4.9868
C1	50.8200	50.8000	41.8300	57.8000
C2	0.4088	0.4693	0.3200	0.4800
C3	0.0064	0.0064	0.0064	0.0070
C4	0.0070	0.0072	0.0053	0.0072

Table B-155 Option 1 IRI local calibration results – repeated split sampling

Figure B-321 Option 1 IRI repeated split sampling frequency distributions – calibration

Figure B-322 Option 1 IRI repeated split sampling frequency distributions – validation

Figure B-323 Option 1 IRI local calibration residual plots – repeated split sampling

Bootstrapping

Global Model				
Doromotor	Global Model	Global Model	Global model	Global model
r al ameter	Mean	Median	lower CI	upper CI
SEE	14.7738	14.7500	12.9187	16.6746
Bias	2.7817	2.7779	0.4205	5.0187
C1	40.0000	40.0000	-	-
C2	0.4000	0.4000	-	-
C3	0.0080	0.0080	-	-
C4	0.0150	0.0150	-	-
Local Model				
		Local Model		
Parameter	Local Model	Local Model Local Model	Local model	Local model upper
Parameter	Local Model Mean	Local Model Local Model Median	Local model lower CI	Local model upper CI
Parameter SEE	Local Model Mean 13.9428	Local Model Local Model Median 13.9428	Local model lower CI 11.8322	Local model upper CI 16.2173
Parameter SEE Bias	Local Model Mean 13.9428 -0.0391	Local Model Local Model Median 13.9428 -0.0160	Local model lower CI 11.8322 -0.9072	Local model upper CI 16.2173 0.8145
Parameter SEE Bias C1	Local Model Mean 13.9428 -0.0391 50.3720	Local Model Local Model Median 13.9428 -0.0160 51.1021	Local model lower CI 11.8322 -0.9072 38.5371	Local model upper CI 16.2173 0.8145 57.8050
Parameter SEE Bias C1 C2	Local Model Mean 13.9428 -0.0391 50.3720 0.4102	Local Model Local Model Median 13.9428 -0.0160 51.1021 0.4800	Local model lower CI 11.8322 -0.9072 38.5371 0.3200	Local model upper CI 16.2173 0.8145 57.8050 0.4800
Parameter SEE Bias C1 C2 C3	Local Model Mean 13.9428 -0.0391 50.3720 0.4102 0.0066	Local Model Median 13.9428 -0.0160 51.1021 0.4800 0.0064	Local model lower CI 11.8322 -0.9072 38.5371 0.3200 0.0064	Local model upper CI 16.2173 0.8145 57.8050 0.4800 0.0084

 Table B-156 Option 1 IRI local calibration results – bootstrapping

Figure B-324 Option 1 IRI local calibration residual plots – bootstrapping

Figure B-325 Option 1 IRI bootstrapping frequency distributions

B.1.5.2 Option 2

No sampling

Table B-157 Option 2 IRI local calibration results – no sampling

Parameter	Global	Local
SEE	16.0659	15.8267
Bias	0.2456	0.0564
R^2	0.6857	0.6936
t-test pvalue	0.7407	0.9385
Intercept $= 0$	0.0000	0.0000
Slope = 1	0.0000	0.0000
C1	40.0000	32.0602
C2	0.4000	0.3200
C3	0.0080	0.0064
C4	0.0150	0.0180

Figure B-326 Option 2 IRI local calibration measured versus predicted – no sampling

Figure B-327 Option 2 IRI local calibration residual plots – no sampling

Split sampling

Parameter	Global model	Local model	Validation
SEE	16.6468	16.3668	14.7618
Bias	-0.2285	-0.2634	1.3524
R^2	0.6991	0.7091	0.6549
t-test pvalue	0.8074	0.7749	0.2553
Intercept $= 0$	0.0000	0.0000	0.0000
Slope = 1	0.0000	0.0000	0.0000
C1	40.0000	33.4400	33.4400
C2	0.4000	0.3200	0.3200
C3	0.0080	0.0064	0.0064
C4	0.0150	0.0180	0.0180

Table B-158 Option 2 IRI local calibration results – split sampling

Figure B-328 Option 2 IRI local calibration measured versus predicted – split sampling

Figure B-329 Option 2 IRI local calibration residual plots – split sampling

Repeated split sampling

Global Model						
Daramatar	Global Model	Global Model	Global model	Global model		
	Mean	Median	lower CI	upper CI		
SEE	16.1000	16.1383	14.8243	17.2964		
Bias	0.2126	0.2346	-1.2712	1.7130		
C1	40.0000	40.0000	-	-		
C2	0.4000	0.4000	-	-		
C3	0.0080	0.0080	-	-		
C4	0.0150	0.0150	-	-		
		Local Model				
Daramatar	Local Model	Local Model	Local model lower	Local model		
Parameter	Mean	Median	CI	upper CI		
SEE	15.8346	15.8684	14.5452	17.0303		
Bias	-0.2411	-0.1812	-1.1543	0.3264		
C1	32.1854	33.4400	25.6184	33.4400		
C2	0.3428	0.3200	0.3200	0.4800		
C3	0.0064	0.0064	0.0064	0.0064		
C4	0.0175	0.0180	0.0149	0.0180		
Local Model validation						
Parameter	Local Model	Local Model	Local model	Local model		
	Mean	Median	lower CI	upper CI		
SEE	15.8973	15.9040	12.8664	18.7973		
Bias	-0.1664	0.0272	-4.8854	3.8174		
C1	32.1854	33.4400	25.6184	33.4400		
C2	0.3428	0.3200	0.3200	0.4800		
C3	0.0064	0.0064	0.0064	0.0064		
C4	0.0175	0.0180	0.0149	0.0180		

Table B-159 Option 2 IRI local calibration results – repeated split sampling

Figure B-330 Option 2 IRI repeated split sampling frequency distributions – calibration

Figure B-331 Option 2 IRI repeated split sampling frequency distributions – validation

Figure B-332 Option 2 IRI local calibration residual plots – repeated split sampling

Bootstrapping

Global Model					
Parameter	Global Model	Global Model	Global model	Global model	
	Mean	Median	lower CI	upper CI	
SEE	16.0256	16.0372	13.9711	17.9502	
Bias	0.2779	0.2614	-1.9643	2.5374	
C1	40.0000	40.0000	-	-	
C2	0.4000	0.4000	-	-	
C3	0.0080	0.0080	-	-	
C4	0.0150	0.0150	-	-	
Local Model					
		Local Model			
Darameter	Local Model	Local Model Local Model	Local model	Local model upper	
Parameter	Local Model Mean	Local Model Local Model Median	Local model lower CI	Local model upper CI	
Parameter SEE	Local Model Mean 15.7316	Local Model Local Model Median 15.7544	Local model lower CI 13.6244	Local model upper CI 17.6772	
Parameter SEE Bias	Local Model Mean 15.7316 -0.3810	Local Model Local Model Median 15.7544 -0.3082	Local model lower CI 13.6244 -1.6554	Local model upper CI 17.6772 0.4516	
Parameter SEE Bias C1	Local Model Mean 15.7316 -0.3810 31.6450	Local Model Local Model Median 15.7544 -0.3082 33.4400	Local model lower CI 13.6244 -1.6554 22.2960	Local model upper CI 17.6772 0.4516 33.4400	
Parameter SEE Bias C1 C2	Local Model Mean 15.7316 -0.3810 31.6450 0.3613	Local Model Local Model Median 15.7544 -0.3082 33.4400 0.3200	Local model lower CI 13.6244 -1.6554 22.2960 0.3200	Local model upper CI 17.6772 0.4516 33.4400 0.4800	
Parameter SEE Bias C1 C2 C3	Local Model Mean 15.7316 -0.3810 31.6450 0.3613 0.0065	Local Model Local Model Median 15.7544 -0.3082 33.4400 0.3200 0.0064	Local model lower CI 13.6244 -1.6554 22.2960 0.3200 0.0064	Local model upper CI 17.6772 0.4516 33.4400 0.4800 0.0071	

 Table B-160 Option 2 IRI local calibration results – bootstrapping

Figure B-333 Option 2 IRI local calibration residual plots – repeated split sampling

Figure B-334 Option 2 IRI bootstrapping frequency distributions

B.1.5.3 Option 4

No sampling

Table B-161 Option 4 IRI local calibration results – no sampling

Parameter	Global	Local	
SEE	20.6944	17.9586	
Bias	-5.9035	0.3185	
R^2	0.6884	0.7006	
t-test pvalue	0.0040	0.8610	
Intercept $= 0$	0.0000	0.0000	
Slope $= 1$	0.0000	0.0000	
C1	40.0000	20.8000	
C2	0.4000	0.1600	
C3	0.0080	0.0048	
C4	0.0150	0.0277	

Figure B-335 Option 4 IRI local calibration measured versus predicted – no sampling

Figure B-336 Option 4 IRI local calibration residual plots – no sampling

Split sampling

Parameter	Global model	Local model	Validation
SEE	22.6387	19.9658	13.6126
Bias	-5.8644	0.8658	0.7417
R^2	0.6798	0.6814	0.7711
t-test pvalue	0.0328	0.7255	0.7558
Intercept $= 0$	0.0000	0.0000	0.0037
Slope = 1	0.0000	0.0000	0.0035
C1	40.0000	20.8000	20.8000
C2	0.4000	0.1600	0.1600
C3	0.0080	0.0048	0.0048
C4	0.0150	0.0282	0.0282

Table B-162 Option 4 IRI local calibration results – split sampling

Figure B-337 Option 4 IRI local calibration measured versus predicted – split sampling

Figure B-338 Option 4 IRI local calibration residual plots – split sampling

The IRI reliability is internally estimated by the software.

Repeated split sampling

Global Model				
Doromotor	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	20.7012	20.9912	16.4997	23.8782
Bias	-5.8767	-5.9631	-9.3455	-2.0099
C1	40.0000	40.0000	-	-
C2	0.4000	0.4000	-	-
C3	0.0080	0.0080	-	-
C4	0.0150	0.0150	-	-
		Local Model		
Daramatar	Local Model	Local Model	Local model lower	Local model
Farameter	Mean	Median	CI	upper CI
SEE	17.8550	18.0194	14.7366	20.2766
Bias	0.2396	0.2738	-0.9799	1.3002
C1	20.8988	20.8000	20.8000	21.6186
C2	0.1600	0.1600	0.1600	0.1600
C3	0.0048	0.0048	0.0048	0.0048
C4	0.0275	0.0277	0.0232	0.0300
	Lo	ocal Model validatio	n	
Doromotor	Local Model	Local Model	Local model	Local model
Farameter	Mean	Median	lower CI	upper CI
SEE	18.7280	18.7737	11.7677	25.7248
Bias	-0.0133	0.2452	-11.4828	8.9161
C1	20.8988	20.8000	20.8000	21.6186
C2	0.1600	0.1600	0.1600	0.1600
C3	0.0048	0.0048	0.0048	0.0048
C4	0.0275	0.0277	0.0232	0.0300

Table B-163 Option 4 IRI local calibration results – repeated split sampling

Figure B-339 Option 4 IRI repeated split sampling frequency distributions – calibration

Figure B-340 Option 4 IRI repeated split sampling frequency distributions – validation

Figure B-341 Option 4 IRI local calibration residual plots – repeated split sampling

The IRI reliability is internally estimated by the software.

Bootstrapping

Global Model				
Doromotor	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	20.4800	20.6428	14.9401	25.4311
Bias	-5.8312	-5.9656	-11.3979	0.1292
C1	40.0000	40.0000	-	-
C2	0.4000	0.4000	-	-
C3	0.0080	0.0080	-	-
C4	0.0150	0.0150	-	-
		Local Model		
Daramatar	Local Model	Local Model	Local model	Local model upper
I aranneter	Mean	Median	lower CI	CI
SEE	17.5260	17.6062	13.2472	21.3238
Bias	0.1290	0.1613	-1.4172	1.5613
C1	21.4303	20.8000	20.8000	31.2000
C2	0.1600	0.1600	0.1600	0.1600
C3	0.0049	0.0048	0.0048	0.0071
C4	0.0271	0.0276	0.0208	0.0300

Table B-164 Option 4 IRI local calibration results – bootstrapping

Figure B-342 Option 4 IRI local calibration residual plots – bootstrapping

Figure B-343 Option 2 IRI bootstrapping frequency distributions

The IRI reliability is internally estimated by the software.

B.2 Rigid Pavement Performance Prediction Models

B.2.1 Transverse cracking

B.2.1.1 Option 1

No sampling

Parameter	Global model	Local model
SEE	21.10	12.30
Bias	-11.86	0.17
R^2	0.58	0.67
t-test pvalue	0.00	0.92
Intercept $= 0$	0.36	0.00
Slope = 1	0.00	0.00
C4	1.00	0.27
C5	-1.98	-1.56

Table B-165 Option 1 transverse cracking local calibration results – no sampling

(c) Fatigue damage predicted cracking

Figure B-345 Option 1 transverse cracking residual plots – no sampling

Figure B-346 Option 1 Transverse cracking reliability model fitting – no sampling

Split sampling

Table B-166 Option 1 transverse cracking local calibration results – split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	24.09	13.05	12.24
Bias	-14.59	0.14	8.13
R^2	0.57	0.69	0.32
t-test pvalue	0.00	0.94	0.00
Intercept $= 0$	0.50	0.01	0.00
Slope = 1	0.00	0.00	0.04
C4	1.00	0.35	0.35
C5	-1.98	-1.28	-1.28

Figure B-347 Option 1 transverse cracking local calibration measured vs. predicted – split sampling

Figure B-348 Option 1 transverse cracking residual plots – split sampling Reliability

Figure B-349 Option 1 Transverse cracking reliability model fitting – split sampling

Repeated split sampling

Domomotor	Global Model	Iodel Global Model Global model lower		Global model
Parameter	Mean	Median	CI	upper CI
SEE	21.03	21.03	14.59	25.06
Bias	-11.83	-11.83	-15.71	-7.48
C4	1.00	1.00	-	-
C5	-1.98	-1.98	-	-
Doromator	Local Model	Local Model	Local model lower	Local model upper
Faranieter	Mean	Median	CI	CI
SEE	11.92	12.71	7.04	14.33
Bias	0.15	0.17	-0.37	0.52
C4	0.26	0.27	0.14	0.36
C5	-1.63	-1.59	-1.98	-1.31
Doromator	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	14.10	13.02	5.30	26.35
Bias	0.04	0.06	-13.69	12.30
C4	0.26	0.27	0.14	0.36
C5	-1.63	-1.59	-1.98	-1.31

Table B-167 Option 1 transverse cracking local calibration results – repeated split sampling

Figure B-350 Option 1 – Distribution of calibration parameters – repeated split sampling - Calibration

Figure B-351 Option 1 – Distribution of calibration parameters – repeated split sampling - Validation

(c) Local model validation

Figure B-352 Option 1 transverse cracking residual plots – repeated split sampling

Figure B-353 Option 1 Transverse cracking reliability model fitting – repeated split sampling

Bootstrapping

Doromator	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	20.62	20.68	12.05	28.91
Bias	-11.74	-11.55	-18.69	-5.54
C4	1.00	1.00	-	-
C5	-1.98	-1.98	-	-
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	11.37	11.65	5.21	16.21
Bias	0.13	0.15	-0.54	0.68
C4	0.25	0.26	0.02	0.44
C5	-1.71	-1.63	-2.95	-1.21

Figure B-354 Option 1 – Distribution of calibration parameters – bootstrapping

Figure B-355 Option 1 transverse cracking residual plots – bootstrapping

Figure B-356 Option 1 Transverse cracking reliability model fitting – bootstrapping

B.2.1.2 Option 2

No sampling

Table B-169 Option 2 transverse cracking local calibration results – no sampling

Parameter	Global model	Local model
SEE	14.30	8.43
Bias	-5.83	0.37
R^2	0.65	0.73
t-test pvalue	0.00	0.63
Intercept $= 0$	0.42	0.00
Slope = 1	0.00	0.00
C4	1.00	0.24
C5	-1.98	-1.67

Figure B-357 Option 2 transverse cracking local calibration measured vs. predicted – no sampling

Figure B-358 Option 2 transverse cracking residual plots – no sampling

Figure B-359 Option 2 Transverse cracking reliability model fitting – no sampling

Split sampling

Table B-170 Option 2 transverse cracking local calibration results – split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	12.18	6.74	11.18
Bias	-4.60	0.06	0.84
R^2	0.70	0.77	0.68
t-test pvalue	0.00	0.94	0.62
Intercept $= 0$	0.87	0.07	0.04
Slope = 1	0.00	0.00	0.00
C4	1.00	0.19	0.19
C5	-1.98	-1.81	-1.81

Figure B-360 Option 2 transverse cracking local calibration measured vs. predicted – split sampling

Figure B-361 Option 2 transverse cracking residual plots – split sampling Reliability

Figure B-362 Option 2 Reliability model fitting – split sampling

Repeated split sampling

	samping				
Domomotor	Global Model	Global Model	Global model lower	Global model	
Parameter	Mean	Median	CI	upper CI	
SEE	14.19	14.19	9.56	17.28	
Bias	-5.83	-5.83	-8.11	-3.35	
C4	1.00	1.00	-	-	
C5	-1.98	-1.98	-	-	
Doromotor	Local Model	Local Model	Local model lower	Local model upper	
Faranieter	Mean	Median	CI	CI	
SEE	8.16	8.76	4.30	10.09	
Bias	0.33	0.37	-0.24	0.70	
C4	0.23	0.24	0.12	0.31	
C5	-1.74	-1.69	-2.17	-1.50	
Doromotor	Local Model	Local Model	Local model lower	Local model upper	
Faranieter	Mean	Median	CI	CI	
SEE	9.22	8.42	2.41	18.22	
Bias	0.49	0.59	-5.98	7.36	
C4	0.23	0.24	0.12	0.31	
C5	-1.74	-1.69	-2.17	-1.50	

Table B-171 Option 2 transverse cracking local calibration results – repeated split sampling

Figure B-363 Option 2 – Distribution of calibration parameters – repeated split sampling - Calibration

Figure B-364 Option 2 – Distribution of calibration parameters – repeated split sampling - Validation

Figure B-365 Option 2 transverse cracking residual plots – repeated split sampling **Reliability**

Figure B-366 Option 2 Transverse cracking reliability model fitting – repeated split sampling

Bootstrapping

 Table B-172 Option 2 transverse cracking local calibration results – bootstrapping

Parameter	Global Model	Global Model	Global model	Global model
1 arameter	Mean	Median	lower CI	upper CI
SEE	13.86	13.76	7.15	19.80
Bias	-5.79	-5.59	-9.79	-2.40
C4	1.00	1.00	-	-
C5	-1.98	-1.98	-	-
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	7.81	7.92	3.53	11.78
Bias	0.30	0.31	-0.45	0.84
C4	0.23	0.23	0.02	0.42
C5	-1.80	-1.71	-3.03	-1.43

Figure B-367 Option 2 – Distribution of calibration parameters – bootstrapping

Figure B-368 Option 2 transverse cracking residual plots – bootstrapping

Figure B-369 Option 2 Transverse cracking reliability model fitting – bootstrapping

B.2.1.3 Option 3

No sampling

Table B-173 Option 3 transverse cracking local calibration results – no sampling

Parameter	Global model	Local model
SEE	16.94	13.79
Bias	-4.46	1.76
R^2	0.13	0.26
t-test pvalue	0.00	0.11
Intercept $= 0$	0.04	0.00
Slope = 1	0.00	0.00
C4	1.00	2.16
C5	-1.98	-0.58

(c) Fatigue damage predicted cracking

Figure B-371 Option 3 transverse cracking residual plots – no sampling

Figure B-372 Option 3 Transverse cracking reliability model fitting – no sampling

Split sampling

Parameter	Global model	Local model calibration	Local model validation
SEE	18.92	14.96	11.13
Bias	-4.36	2.44	2.60
R^2	0.10	0.20	0.59
t-test pvalue	0.01	0.09	0.11
Intercept $= 0$	0.03	0.00	0.00
Slope = 1	0.00	0.00	0.00
C4	1.00	2.56	2.56
C5	-1.98	-0.48	-0.48

Table B-174 Option 3 transverse cracking local calibration results – split sampling

Figure B-373 Option 3 transverse cracking local calibration measured vs. predicted – split sampling

Figure B-374 Option 3 transverse cracking residual plots – split sampling Reliability

Figure B-375 Option 3 Transverse cracking reliability model fitting – split sampling

Repeated split sampling

Domomotor	Global Model	Global Model	Global model lower	Global model
Parameter	Mean	Median	CI	upper CI
SEE	16.98	16.98	12.69	19.95
Bias	-4.44	-4.44	-7.56	-1.76
C4	1.00	1.00	-	-
C5	-1.98	-1.98	-	-
Parameter	Local Model	Local Model	Local model lower	Local model upper
	Mean	Median	CI	CI
SEE	13.62	13.78	10.25	15.91
Bias	1.70	1.78	0.43	2.63
C4	2.15	2.23	0.81	3.33
C5	-0.61	-0.56	-1.01	-0.45
Parameter	Local Model	Local Model	Local model lower	Local model upper
	Mean	Median	CI	CI
SEE	14.95	14.50	9.69	21.89
Bias	2.03	2.16	-6.38	9.29
C4	2.15	2.23	0.81	3.33
C5	-0.61	-0.56	-1.01	-0.45

Table B-175 Option 3 transverse cracking local calibration results – repeatedsplit sampling

Figure B-376 Option 3 – Distribution of calibration parameters – repeated split sampling - Calibration

Figure B-377 Option 3 – Distribution of calibration parameters – repeated split sampling – Validation

(c) Local model validation

Figure B-378 Option 3 transverse cracking residual plots – repeated split sampling

Figure B-379 Option 3 Transverse cracking reliability model fitting – repeated split sampling

Bootstrapping

 Table B-176 Option 3 transverse cracking local calibration results – bootstrapping

Parameter	Global Model	Global Model	Global model	Global model
I di difficici	Mean	Median	lower CI	upper CI
SEE	16.77	16.86	11.19	22.09
Bias	-4.45	-4.52	-8.86	0.03
C4	1.00	1.00	-	-
C5	-1.98	-1.98	-	-
Parameter	Local Model	Local Model	Local model lower	Local model upper
	Mean	Median	CI	CI
SEE	13.24	13.42	8.56	17.11
Bias	1.65	1.67	-0.26	3.41
C4	2.14	2.16	0.50	3.69
C5	-0.64	-0.59	-1.25	-0.37

Figure B-380 Option 3 – Distribution of calibration parameters – bootstrapping

Figure B-381 Option 3 transverse cracking residual plots – bootstrapping

Predicted % slabs cracked

Figure B-382 Option 3 Transverse cracking reliability model fitting – bootstrapping

B.2.1.4 Option 4

No sampling

Table B-177 Option 4 transverse cracking local calibration results – no sampling

Parameter	Global model	Local model
SEE	0.92	0.72
Bias	-0.55	-0.04
R^2	0.07	0.12
t-test pvalue	0.00	0.65
Intercept $= 0$	0.00	0.00
Slope = 1	0.00	0.00
C4	1.00	5.00
C5	-1.98	-1.00

Figure B-383 Option 4 transverse cracking local calibration measured vs. predicted – no sampling

Figure B-384 Option 4 transverse cracking residual plots – no sampling

Figure B-385 Option 4 Transverse cracking reliability model fitting – no sampling
Split sampling

 Table B-178 Option 4 transverse cracking local calibration results – split sampling

 Description

Parameter	Global model	Local model calibration	Local model validation
SEE	0.80	0.63	0.95
Bias	-0.48	-0.05	-0.29
R^2	0.09	0.14	0.13
t-test pvalue	0.00	0.63	0.16
Intercept $= 0$	0.00	0.00	0.00
Slope = 1	0.00	0.00	0.00
C4	1.00	5.00	5.00
C5	-1.98	-1.04	-1.04

Figure B-386 Option 4 transverse cracking local calibration measured vs. predicted – split sampling

Figure B-387 Option 4 transverse cracking residual plots – split sampling Reliability

Figure B-388 Option 4 Transverse cracking reliability model fitting – split sampling

Repeated split sampling

Doromotor	Global Model	Global Model	Global model lower	Global model
Parameter	Mean	Median	CI	upper CI
SEE	0.91	0.91	0.57	1.10
Bias	-0.55	-0.55	-0.73	-0.31
C4	1.00	1.00	-	-
C5	-1.98	-1.98	-	-
Domomotor	Local Model	Local Model	Local model lower	Local model upper
Parameter	Mean	Median	CI	CI
SEE	0.70	0.74	0.43	0.83
Bias	-0.04	-0.04	-0.07	0.00
C4	5.00	5.00	5.00	5.00
C5	-1.00	-0.99	-1.13	-0.90
Domomotor	Local Model	Local Model	Local model lower	Local model upper
Parameter	Mean	Median	CI	CI
SEE	0.78	0.76	0.38	1.24
Bias	-0.02	-0.01	-0.78	0.66
C4	5.00	5.00	5.00	5.00
C5	-1.00	-0.99	-1.13	-0.90

Table B-179 Option 4 transverse cracking local calibration results – repeated split sampling

Figure B-389 Option 4 – Distribution of calibration parameters – repeated split sampling - Calibration

Figure B-390 Option 4 – Distribution of calibration parameters – repeated split sampling - Validation

Figure B-391 Option 4 transverse cracking residual plots – repeated split sampling **Reliability**

Figure B-392 Option 4 Transverse cracking reliability model fitting – repeated split sampling

Bootstrapping

Doromotor	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	0.88	0.89	0.44	1.26
Bias	-0.54	-0.54	-0.87	-0.25
C4	1.00	1.00	-	-
C5	-1.98	-1.98	-	-
Doromotor	Local Model	Local Model	Local model lower	Local model upper
Farameter	Mean	Median	CI	CI
SEE	0.67	0.69	0.35	0.90
Bias	-0.04	-0.04	-0.09	0.01
C4	4.96	5.00	4.63	5.00
C5	-1.01	-1.00	-1.20	-0.86

Table B-180 Option 4 transverse cracking local calibration results – bootstrapping

Figure B-393 Option 4 – Distribution of calibration parameters – bootstrapping

Figure B-394 Option 3 transverse cracking residual plots – bootstrapping

Predicted % slabs cracked

Figure B-395 Option 4 Transverse cracking reliability model fitting – bootstrapping

B.2.2 Faulting

B.2.2.1 Option 1

Parameter	SEE	Bias
Global model	0.059	0.035
C1 = 0.4	0.024	0.007
C1 = 0.5	0.029	0.011
C1 = 0.6	0.034	0.015
C1 = 0.65	0.036	0.017
C1 = 0.7	0.039	0.020
C1 = 0.75	0.042	0.022
C1 = 0.8	0.045	0.025
C1 = 0.85	0.048	0.027
C1 = 0.9	0.045	0.025

Table B-181 Option 1 faulting model local calibration results

Figure B-396 Option 1 – Global faulting model

Figure B-397 Option 1 – C1 = 0.4

Figure B-398 Option 1 – C1 = 0.5

Figure B-399 Option 1 – C1 = 0.6

Figure B-401 Option 1 – C1 = 0.7

Figure B-402 Option 1 – C1 = 0.75

Figure B-403 Option 1 – C1 = 0.8

Figure B-404 Option 1 – C1 = 0.85

Figure B-405 Option 1 – C1 = 0.9

Figure B-406 Option 1 faulting model reliability equation

B.2.2.2 Option 2

Table B-182 Option 2 faulting model local calibration results

Parameter	SEE	Bias
Global model	0.051	0.026
C1 = 0.4	0.021	0.004
C1 = 0.5	0.025	0.008
C1 = 0.6	0.029	0.011
C1 = 0.65	0.032	0.013
C1 = 0.7	0.034	0.015
C1 = 0.75	0.037	0.016
C1 = 0.8	0.039	0.018
C1 = 0.85	0.042	0.020
C1 = 0.9	0.039	0.018

Figure B-407 Option 2 – Global faulting model

Figure B-409 Option 2 - C1 = 0.5

Figure B-410 Option 2 – C1 = 0.6

Figure B-411 Option 2 – C1 = 0.65

Figure B-412 Option 2 – C1 = 0.7

Figure B-414 Option 2 – C1 = 0.8

Figure B-415 Option 2 – C1 = 0.85

Figure B-416 Option 2 – C1 = 0.9

Figure B-417 Option 2 faulting model reliability equation

Parameter	SEE	Bias
Global model	0.049	0.023
C1 = 0.4	0.022	0.002
C1 = 0.5	0.025	0.005
C1 = 0.6	0.029	0.008
C1 = 0.65	0.031	0.010
C1 = 0.7	0.033	0.012
C1 = 0.75	0.035	0.014
C1 = 0.8	0.038	0.015
C1 = 0.85	0.040	0.017
C1 = 0.9	0.038	0.015

Table B-183 Option 3 faulting model local calibration results

Figure B-418 Option 3 - Global faulting model

Figure B-419 Option 3 - C1 = 0.4

Figure B-420 Option 3 - C1 = 0.5

Figure B-421 Option 3 - C1 = 0.6

Figure B-422 Option 3 - C1 = 0.65

Figure B-423 Option 3 - C1 = 0.7

Figure B-424 Option 3 - C1 = 0.75

Figure B-425 Option 3 - C1 = 0.8

Figure B-427 Option 3 - C1 = 0.9

Reliability

Figure B-428 Option 3 faulting model reliability equation

Parameter	SEE	Bias
Global model	0.005	-0.002
C1 = 0.4	0.005	-0.003
C1 = 0.5	0.005	-0.002
C1 = 0.6	0.005	-0.002
C1 = 0.65	0.005	-0.002
C1 = 0.7	0.005	-0.002
C1 = 0.75	0.005	-0.002
C1 = 0.8	0.004	-0.002
C1 = 0.85	0.004	-0.001
C1 = 0.9	0.004	-0.002

Table B-184 Option 4 faulting model local calibration results

Figure B-429 Option 4 - Global faulting model

Figure B-430 Option 4 - C1 = 0.4

Figure B-433 Option 4 - C1 = 0.65

Figure B-436 Option 4 - C1 = 0.8

Figure B-438 Option 4 - C1 = 0.9

Reliability

Figure B-439 Option 4 faulting model reliability equation

B.2.3 Pavement Roughness (IRI)

B.2.3.1 Option 1

No sampling

Parameter	Global	Local
SEE	17.314	15.564
Bias	-11.398	4.215
R^2	0.640	0.538
t-test pvalue	0.000	0.004
Intercept $= 0$	0.000	0.000
Slope $= 1$	0.000	0.000
C1	0.820	0.586
C2	0.442	11.833
C3	1.493	1.493
C4	25.240	25.240

Figure B-440 Option 1 IRI local calibration measured versus predicted – no sampling

Figure B-441 Option 1 IRI local calibration residual plots – no sampling

Split sampling

Parameter	Global model	Local model	Validation
SEE	16.263	14.999	16.341
Bias	-10.020	3.070	3.401
R^2	0.614	0.497	0.543
t-test pvalue	0.000	0.080	0.186
Intercept $= 0$	0.000	0.000	0.000
Slope = 1	0.000	0.000	0.000
C1	0.820	0.342	0.342
C2	0.442	12.599	12.599
C3	1.493	1.493	1.493
C4	25.240	25.240	25.240

Table B-186 Option 1 IRI local calibration results – split sampling

Figure B-442 Option 1 IRI local calibration measured versus predicted – split sampling

Figure B-443 Option 1 IRI local calibration residual plots – split sampling

Repeated split sampling

Global Model				
Daramatar	Global Model	Global Model	Global model	Global model
	Mean	Median	lower CI	upper CI
SEE	17.330	17.658	14.491	19.182
Bias	-11.410	-11.393	-14.018	-9.028
C1	0.820	0.820	-	-
C2	0.442	0.442	-	-
C3	1.492	1.492	-	-
C4	25.240	25.240	-	-
		Local Model		
Parameter	Local Model	Local Model	Local model lower	Local model
	Mean	Median	CI	upper CI
SEE	15.263	15.406	12.163	17.195
Bias	4.314	4.341	2.710	5.766
C1	0.603	0.604	0.161	1.051
C2	11.840	11.721	9.757	14.422
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240
	L	ocal Model validatio	n	
Donomatan	Local Model	Local Model	Local model	Local model
Farameter	Mean	Median	lower CI	upper CI
SEE	17.109	16.515	10.052	29.205
Bias	4.383	4.166	-6.031	17.373
C1	0.603	0.604	0.161	1.051
C2	11.840	11.721	9.757	14.422
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240

Table B-187 Option 1 IRI local calibration results – repeated split sampling

Figure B-444 Option 1 IRI repeated split sampling frequency distributions – calibration

Figure B-445 Option 1 IRI repeated split sampling frequency distributions – validation

Figure B-446 Option 1 IRI local calibration residual plots – repeated split sampling

Bootstrapping

Global Model					
Doromotor	Global Model	Global Model	Global model	Global model	
Farameter	Mean	Median	lower CI	upper CI	
SEE	17.239	17.085	13.847	21.179	
Bias	-11.466	-11.462	-14.950	-7.870	
C1	0.820	0.820	-	-	
C2	0.442	0.442	-	-	
C3	1.492	1.492	-	-	
C4	25.240	25.240	-	-	
Local Model					
		Local Model			
Darameter	Local Model	Local Model Local Model	Local model	Local model upper	
Parameter	Local Model Mean	Local Model Local Model Median	Local model lower CI	Local model upper CI	
Parameter SEE	Local Model Mean 14.899	Local Model Local Model Median 14.833	Local model lower CI 11.651	Local model upper CI 18.350	
Parameter SEE Bias	Local Model Mean 14.899 4.417	Local Model Local Model Median 14.833 4.395	Local model lower CI 11.651 2.673	Local model upper CI 18.350 6.422	
Parameter SEE Bias C1	Local Model Mean 14.899 4.417 0.584	Local Model Local Model Median 14.833 4.395 0.590	Local model lower CI 11.651 2.673 0.035	Local model upper CI 18.350 6.422 1.159	
Parameter SEE Bias C1 C2	Local Model Mean 14.899 4.417 0.584 12.068	Local Model Local Model Median 14.833 4.395 0.590 12.023	Local model lower CI 11.651 2.673 0.035 8.754	Local model upper CI 18.350 6.422 1.159 15.396	
Parameter SEE Bias C1 C2 C3	Local Model Mean 14.899 4.417 0.584 12.068 1.493	Local Model Local Model Median 14.833 4.395 0.590 12.023 1.493	Local model lower CI 11.651 2.673 0.035 8.754 1.493	Local model upper CI 18.350 6.422 1.159 15.396 1.493	

Table B-188 Option 1 IRI local calibration results – bootstrapping

Figure B-447 Option 1 IRI bootstrapping frequency distributions

Figure B-448 Option 1 IRI local calibration residual plots – repeated split sampling

The IRI reliability is internally estimated by the software, and uses an initial IRI standard deviation of 5.4 inch/mile.

B.2.3.2 Option 2

No sampling

Parameter	Global	Local
SEE	15.474	13.792
Bias	-10.026	-0.498
R^2	0.722	0.614
t-test pvalue	0.000	0.638
Intercept $= 0$	0.000	0.000
Slope = 1	0.000	0.000
C1	0.820	1.182
C2	0.442	3.465
C3	1.493	1.493
C4	25.240	25.240

 Table B-189 Option 2 IRI local calibration results – no sampling

Figure B-449 Option 2 IRI local calibration measured versus predicted – no sampling

Figure B-450 Option 2 IRI local calibration residual plots- no sampling

Split sampling

Parameter	Global model	Local model	Validation
SEE	16.433	14.847	12.641
Bias	-10.745	-1.109	1.212
R^2	0.716	0.597	0.630
t-test pvalue	0.000	0.418	0.486
Intercept $= 0$	0.000	0.000	0.015
Slope = 1	0.000	0.000	0.019
C1	0.820	1.301	1.301
C2	0.442	3.202	3.202
C3	1.493	1.493	1.493
C4	25.240	25.240	25.240

Table B-190 Option 2 IRI local calibration results – split sampling

Figure B-451 Option 2 IRI local calibration measured versus predicted – split sampling

Figure B-452 Option 2 IRI local calibration residual plots – split sampling

Repeated split sampling

	Global Model			
Doromotor	Global Model	Global Model	Global model Global mod	
Farameter	Mean	Median	lower CI	upper CI
SEE	15.508	15.704	13.453	16.981
Bias	-10.038	-10.008	-11.764	-8.197
C1	0.820	0.820	-	-
C2	0.442	0.442	-	-
C3	1.492	1.492	-	-
C4	25.240	25.240	-	-
		Local Model		
Daramatar	Local Model	Local Model	Local model lower	Local model
Farameter	Mean	Median	CI	upper CI
SEE	13.648	13.714	11.501	15.181
Bias	-0.415	-0.399	-1.543	0.704
C1	1.192	1.175	0.920	1.604
C2	3.512	3.467	2.701	4.610
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240
	Lo	ocal Model validation	n	
Doromotor	Local Model	Local Model	Local model	Local model
Farameter	Mean	Median	lower CI	upper CI
SEE	14.954	14.644	9.934	22.917
Bias	-0.189	-0.436	-8.036	8.568
C1	1.192	1.175	0.920	1.604
C2	3.512	3.467	2.701	4.610
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240

Table B-191 Option 2 IRI local calibration results – repeated split sampling

Figure B-453 Option 2 IRI repeated split sampling frequency distributions – calibration

Figure B-454 Option 2 IRI repeated split sampling frequency distributions – validation

Figure B-455 Option 2 IRI local calibration residual plots – repeated split sampling

Bootstrapping

	Global Model			
Domomotor	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	15.390	15.341	12.704	18.146
Bias	-10.024	-10.025	-12.716	-7.403
C1	0.820	0.820	-	-
C2	0.442	0.442	-	-
C3	1.492	1.492	-	-
C4	25.240	25.240	-	-
Local Model				
Darameter	Local Model	Local Model	Local model	Local model upper
1 di di litetei	Mean	Median	lower CI	CI
SEE	13 424	13 451	10.963	15 932
	13.121	15.151	10.705	15.752
Bias	-0.382	-0.407	-2.056	1.423
Bias C1	-0.382 1.198	-0.407 1.171	-2.056 0.829	1.423 1.686
Bias C1 C2	-0.382 1.198 3.570	-0.407 1.171 3.517	-2.056 0.829 2.323	1.423 1.686 5.234
Bias C1 C2 C3	-0.382 1.198 3.570 1.492	-0.407 1.171 3.517 1.492	-2.056 0.829 2.323 1.492	1.423 1.686 5.234 1.492

 Table B-192 Option 2 IRI local calibration results – bootstrapping

Figure B-456 Option 2 IRI bootstrapping frequency distributions

Figure B-457 Option 2 IRI local calibration residual plots – bootstrapping

The IRI reliability is internally estimated by the software, and uses an initial IRI standard deviation of 5.4 inch/mile.

B.2.3.3 Option 3

No sampling

Parameter	Global	Local
SEE	23.056	21.471
Bias	-9.862	0.770
R^2	0.346	0.313
t-test pvalue	0.000	0.616
Intercept $= 0$	0.000	0.000
Slope $= 1$	0.000	0.000
C1	0.820	1.781
C2	0.442	2.028
C3	1.493	1.493
C4	25.240	25.240

 Table B-193 Option 3 IRI local calibration results – no sampling

Figure B-458 Option 3 IRI local calibration measured versus predicted – no sampling

Figure B-459 Option 3 IRI local calibration residual plots - no sampling

Split sampling

Parameter	Global model	Local model	Validation
SEE	24.611	23.889	14.764
Bias	-8.805	0.365	-4.996
R^2	0.274	0.230	0.686
t-test pvalue	0.000	0.862	0.004
Intercept $= 0$	0.000	0.000	0.000
Slope = 1	0.000	0.000	0.000
C1	0.820	1.562	1.562
C2	0.442	1.760	1.760
C3	1.493	1.493	1.493
C4	25.240	25.240	25.240

Table B-194 Option 3 IRI local calibration results – split sampling

Figure B-460 Option 3 IRI local calibration measured versus predicted – split sampling

Figure B-461 Option 3 IRI local calibration residual plots – split sampling

Repeated split sampling

	Global Model			
Doromotor	Global Model	Global Model	Global model Global mod	
Farameter	Mean	Median	lower CI	upper CI
SEE	22.844	24.913	14.515	26.687
Bias	-9.897	-9.968	-12.087	-7.283
C1	0.820	0.820	-	-
C2	0.442	0.442	-	-
C3	1.492	1.492	-	-
C4	25.240	25.240	-	-
		Local Model		
Daramatar	Local Model	Local Model	Local model lower	Local model
Farameter	Mean	Median	CI	upper CI
SEE	21.096	23.226	13.031	24.773
Bias	0.863	0.912	-0.883	2.445
C1	1.834	1.709	1.354	2.611
C2	1.993	2.027	0.292	3.670
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240
	Lo	ocal Model validation	n	
Doromotor	Local Model	Local Model	Local model	Local model
Farameter	Mean	Median	lower CI	upper CI
SEE	21.177	18.866	11.079	34.851
Bias	1.535	0.722	-8.065	13.248
C1	1.834	1.709	1.354	2.611
C2	1.993	2.027	0.292	3.670
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240

Table B-195 Option 3 IRI local calibration results – repeated split sampling

Figure B-462 Option 3 IRI repeated split sampling frequency distributions – calibration

Figure B-463 Option 3 IRI repeated split sampling frequency distributions – validation

Figure B-464 Option 3 IRI local calibration residual plots – repeated split sampling

Bootstrapping

	Global Model			
Domomotor	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	21.999	21.994	13.546	32.976
Bias	-9.799	-9.654	-13.994	-6.247
C1	0.820	0.820	-	-
C2	0.442	0.442	-	-
C3	1.492	1.492	-	-
C4	25.240	25.240	-	-
Local Model				
Parameter	Local Model	Local Model	Local model	Local model upper
1 arameter	Mean	Median	lower CI	CI
SEE	20.099	20.566	12.371	31.016
Bias	0.996	0.939	-1.343	3.343
Bias C1	0.996 1.855	0.939 1.799	-1.343 1.096	3.343 2.785
Bias C1 C2	0.996 1.855 1.980	0.939 1.799 1.965	-1.343 1.096 0.000	3.343 2.785 4.327
Bias C1 C2 C3	0.996 1.855 1.980 1.493	0.939 1.799 1.965 1.493	-1.343 1.096 0.000 1.493	3.343 2.785 4.327 1.493

 Table B-196 Option 1 IRI local calibration results – bootstrapping

Figure B-465 Option 3 IRI bootstrapping frequency distributions

Figure B-466 Option 3 IRI local calibration residual plots – bootstrapping

The IRI reliability is internally estimated by the software, and uses an initial IRI standard deviation of 5.4 inch/mile.

B.2.3.4 Option 4

No sampling

Parameter	Global	Local
SEE	11.339	7.949
Bias	-7.555	0.268
R^2	0.729	0.754
t-test pvalue	0.000	0.795
Intercept $= 0$	0.002	0.000
Slope = 1	0.000	0.000
C1	0.820	0.001
C2	0.442	2.541
C3	1.493	1.493
C4	25.240	25.240

 Table B-197 Option 4 IRI local calibration results – no sampling

Figure B-467 Option 4 IRI local calibration measured versus predicted – no sampling

Figure B-468 Option 4 IRI local calibration residual plots - no sampling

Split sampling

Parameter	Global model	Local model	Validation
SEE	10.872	7.128	10.483
Bias	-7.494	0.302	1.055
R^2	0.642	0.692	0.816
t-test pvalue	0.000	0.780	0.681
Intercept $= 0$	0.037	0.005	0.016
Slope = 1	0.002	0.005	0.017
C1	0.820	0.001	0.001
C2	0.442	2.601	2.601
C3	1.493	1.493	1.493
C4	25.240	25.240	25.240

Table B-198 Option 4 IRI local calibration results – split sampling

Figure B-469 Option 4 IRI local calibration measured versus predicted – split sampling

Figure B-470 Option 4 IRI local calibration residual plots – split sampling

Repeated split sampling

	Global Model			
Doromotor	Global Model	Global Model	Global model Global mod	
Farameter	Mean	Median	lower CI	upper CI
SEE	11.395	11.573	8.934	13.129
Bias	-7.575	-7.604	-9.768	-5.430
C1	0.820	0.820	-	-
C2	0.442	0.442	-	-
C3	1.492	1.492	-	-
C4	25.240	25.240	-	-
		Local Model		
Daramatar	Local Model	Local Model	Local model lower	Local model
Farameter	Mean	Median	CI	upper CI
SEE	7.901	7.984	6.419	8.931
Bias	0.280	0.265	-0.085	0.686
C1	0.001	0.000	0.000	0.000
C2	2.554	2.551	2.003	3.164
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240
	Lo	ocal Model validatio	n	
Donomotor	Local Model	Local Model	Local model	Local model
Farameter	Mean	Median	lower CI	upper CI
SEE	8.754	8.740	4.798	12.622
Bias	0.393	0.352	-7.649	8.570
C1	0.001	0.000	0.000	0.000
C2	2.554	2.551	2.003	3.164
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240

 Table B-199 Option 4 IRI local calibration results – repeated split sampling

Figure B-471 Option 4 IRI repeated split sampling frequency distributions – calibration

Figure B-472 Option 4 IRI repeated split sampling frequency distributions – validation

Figure B-473 Option 4 IRI local calibration residual plots – repeated split sampling

Bootstrapping

Global Model				
Donomaton	Global Model	Global Model	Global model	Global model
Farameter	Mean	Median	lower CI	upper CI
SEE	11.179	11.203	7.518	14.591
Bias	-7.539	-7.501	-11.264	-4.032
C1	0.820	0.820	-	-
C2	0.442	0.442	-	-
C3	1.492	1.492	-	-
C4	25.240	25.240	-	-
Local Model				
Daramatar	Local Model	Local Model	Local model	Local model upper
1 arameter	Mean	Median	lower CI	CI
SEE	7.602	7.613	5.470	9.510
Bias	0.295	0.281	-0.250	0.881
C1	0.041	0.000	0.000	0.000
C2	2.540	2.559	1.577	3.513
C3	1.493	1.493	1.493	1.493
C4	25.240	25.240	25.240	25.240

Table B-200 Option 4 IRI local calibration results – bootstrapping

Figure B-474 Option 4 IRI bootstrapping frequency distributions

Figure B-475 Option 4 IRI local calibration residual plots – bootstrapping

B.3 Validation

B.3.1 Fatigue cracking model – Bottom-up

B.3.1.1 Option 1a

Parameter	Global Model	Local Model	Local model validation
SEE	7.447	6.269	6.946
Bias	-4.282	-0.716	-1.952
C1	1.000	0.496	0.496
C2	1.000	0.560	0.560

Table B-201 Option 1a alligator cracking model validation

Table B-202: Option 1a hypothesis test results

Figure B-476 Option 1a validation results

Figure B-477 Option 1a residual plots

B.3.1.2 Option 1b

Parameter	Global Model	Local Model	Local model validation
SEE	4.379	3.960	5.099
Bias	-2.366	-0.819	-1.558
C1	1.000	0.672	0.672
C2	1.000	0.560	0.560

Table B-203 Option 1b alligator cracking model validation

Table B-204: Option 1b hypothesis test results

Figure B-478 Option 1b validation results

Figure B-479 Option 1b residual plots

B.3.2 Fatigue cracking model – Top-down

B.3.2.1 Option 1

Parameter	Global Model	Local Model	Local model validation
SEE	817.4715	696.8328	631.5130
Bias	-466.8421	-136.9143	-21.3558
C1	7.0000	3.1803	3.1803
C2	3.5000	1.2500	1.2500

Table B-205 Option 1 longitudinal cracking model validation

Table B-206: Option 1 hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.7673
Intercept	0.0000
Slope	0.0000

Figure B-480 Option 1 validation results

Figure B-481 Option 1 residual plots

Parameter	Global Model	Local Model	Local model validation
SEE	729.1168	627.0209	892.3061
Bias	-405.5257	-111.3998	-439.1413
C1	7.0000	3.2846	3.2846
C2	3.5000	1.2000	1.2000

Table B-207 Option 2 longitudinal cracking model validation

Table B-208: Option 2 hypothesis test results

Figure B-482 Option 2 validation results

Figure B-483 Option 2 residual plots

B.3.2.3 Option 4

Parameter	Global Model	Local Model	Local model validation
SEE	1549.0513	1177.1581	629.3458
Bias	-1086.5433	-226.3333	201.7576
C1	7.0000	2.2118	2.2118
C2	3.5000	1.2114	1.2114

 Table B-209 Option 4 longitudinal cracking model validation

Table B-210: Option 4 hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.0952
Intercept	0.0001
Slope	0.0003

Figure B-484 Option 4 validation results

Figure B-485 Option 4 residual plots

B.3.3 Rutting model

B.3.3.1 Option 1 Method 1

	SEE			Bias		
layer	Global Model	Local model	Validation	Global Model	Local model	Validation
AC rut	0.0779	0.0772	0.0958	-0.0020	-0.0068	-0.0030
Base rut	0.1186	0.0291	0.0457	0.1021	-0.0040	-0.0073
Subgrade	0.2235	0.0252	0.0381	0.2138	-0.0003	-0.0053
Total rut	0.3369	0.0849	0.1102	0.3139	-0.0111	-0.0155

Table B-211 Option 1 Method 1 rutting model validation

Table B-212 Option 1 Method 1 rutting model validation hypothesis test results

HMA layer	AC rut	Base rut	Subgrade	Total rut
t-test p-value	0.7634	0.1205	0.1786	0.1704
Intercept p-value	0.0000	0.0000	0.0000	0.0000
Slope = 1 p-value	0.0000	0.0000	0.0000	0.0000

Figure B-486 Rutting model validation – option 1 method 1

Figure B-487 Rutting model residual plots – option 1 method 1

HMA layer	SEE			Bias		
	Global	Local	Validation	Global	Local	Validation
	Model	model	v anuation	Model	model	v anuation
AC rut	0.0780	0.1160	0.1151	-0.0017	-0.0852	-0.0886
Base rut	0.1182	0.0341	0.0267	0.1019	0.0063	0.0120
Subgrade	0.2233	0.0855	0.0876	0.2136	0.0775	0.0797
Total rut	0.3368	0.0810	0.0745	0.3138	-0.0014	0.0031

Table B-213 Option 1 Method 2 rutting model validation results

Table B-214 Option 1 Method 2 rutting model validation hypothesis test results

HMA laver	AC rut B	Roso rut	Subarada	Total
TIMA layer	ACTU			rut
t-test p-value	0.0000	0.0000	0.0000	0.6904
Intercept p-value	0.0000	0.0000	0.0000	0.0000
Slope = 1 p-value	0.0000	0.0000	0.0000	0.0000

Figure B-488 Rutting model validation – option 1 method 2

Figure B-489 Rutting model residual plots – option 1 method 2

B.3.3.3 Option 2 Method 1

	SEE			Bias		
lavor	Global	Local	Validation	Global	Local	Validation
layer	Model	model	vanuation	Model	model	vanuation
AC rut	0.0775	0.0768	0.0796	-0.0014	-0.0085	-0.0323
Base rut	0.1399	0.0272	0.0207	0.1118	-0.0059	-0.0013
Subgrade	0.2223	0.0226	0.0088	0.2076	-0.0006	0.0030
Total rut	0.3567	0.0858	0.0853	0.3180	-0.0151	-0.0306

Table B-215 Option 2 Method 1 rutting model validation results

Table B-216 Option 2 Method 1 rutting model validation hypothesis test results

HMA laver	AC rut	Rasa rut	Subarada	Total
TIMA layer	ACTU	Dase Iut	Subgrade	rut
t-test p-value	0.0000	0.4968	0.0001	0.0001
Intercept p-value	0.0000	0.0000	0.0000	0.0000
Slope = 1 p-value	0.0000	0.0000	0.0000	0.0000

Figure B-490 Rutting model validation – option 2 method 1

Figure B-491 Rutting model residual plots – option 2 method 1

	SEE			Bias		
lover	Global	Local	Validation	Global	Local	Validation
layer	Model	model	v anuation	Model	model	vanuation
AC rut	0.0778	0.1147	0.1239	-0.0016	-0.0836	-0.0974
Base rut	0.1182	0.0345	0.0230	0.1019	0.0066	0.0172
Subgrade	0.2232	0.0837	0.0837	0.2136	0.0756	0.0796
Total rut	0.3368	0.0809	0.0808	0.3139	-0.0014	-0.0006

Table B-217 Option 2 Method 2 rutting model validation results

Table B-218 Option 2 Method 2 rutting model validation hypothesis test results

HMA laver	AC rut	Rase rut	Subgrade	Total
	ACTU	Dase Iut	Subgrade	rut
t-test p-value	0.0000	0.0000	0.0000	0.9431
Intercept p-value	0.0000	0.0000	0.0000	0.0000
Slope = 1 p-value	0.0000	0.0000	0.0000	0.0000

Figure B-492 Rutting model validation – option 2 method 2

Figure B-493 Rutting model residual plots – option 2 method 2

B.3.3.5 Option 4 Method 1

	SEE			Bias		
lavor	Global	Local	Validation	Global	Local	Validation
layer	Model	model	v anuation	Model	model	v anuation
AC rut	0.0798	0.0757	0.0940	0.0059	-0.0129	-0.0428
Base rut	0.1421	0.0207	0.0197	0.0952	-0.0084	-0.0102
Subgrade	0.2143	0.0076	0.0062	0.1823	-0.0011	-0.0016
Total rut	0.3666	0.0865	0.1072	0.2833	-0.0224	-0.0546

Table B-219 Option 4 Method 1 rutting model validation results

Table B-220 Option 4 Method 1 rutting model validation hypothesis test results

HMA laver	AC rut	Base rut	Suborade	Total
i iivii i iuyei	ne iui	Duse Iut	Bubgrude	rut
t-test p-value	0.0109	0.0033	0.1645	0.0038
Intercept p-value	0.0000	0.0039	0.0001	0.0000
Slope = 1 p-value	0.0000	0.0000	0.0000	0.0000

Figure B-494 Rutting model validation – option 4 method 1

Figure B-495 Rutting model residual plots – option 4 method 1

шма	SEE			Bias		
lover	Global	Local	Validation	Global	Local	Validation
layer	Model	model	vanuation	Model	model	vanuation
AC rut	0.0780	0.1148	0.1036	-0.0019	-0.0833	-0.0745
Base rut	0.1180	0.0342	0.0240	0.1016	0.0059	0.0056
Subgrade	0.2232	0.0842	0.0852	0.2136	0.0761	0.0777
Total rut	0.3361	0.0810	0.0774	0.3132	-0.0013	0.0088

Table B-221 Option 4 Method 2 rutting model validation results

Table B-222 Option 4 Method 2 rutting model validation hypothesis test results

HMA laver	AC rut	Rasa rut	Subarada	Total
TIMA layer	ACTU	Dase Iut	Subgrade	rut
t-test p-value	0.0000	0.0192	0.0000	0.2585
Intercept p-value	0.0000	0.0000	0.0000	0.0000
Slope = 1 p-value	0.0000	0.0000	0.0000	0.0000

Figure B-496 Rutting model validation – option 4 method 2

Figure B-497 Rutting model residual plots – option 4 method 2

B.3.4 Flexible IRI model

B.3.4.1 Option 1

	Global	Local	Local
Parameter	Model	Model	Model
	Mean	Mean	Validation
SEE	15.2543	15.1863	10.9135
Bias	0.6137	-0.7226	1.0022
C1	0.0150	0.0072	0.8178
C2	0.4000	0.3911	0.4462
C3	0.0080	0.0080	0.0000
C4	40.0000	54.2690	0.0000

Table B-223 Option 1 IRI model validation results

Table B-224 Option 1 IRI model validation hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.4462
Intercept	0.0000
Slope	0.0000

Figure B-498 IRI model validation – option 1

Figure B-499 Option 1 residual plots

B.3.4.2 Option 2

	Global	Local	Local
Parameter	Model	Model	Model
	Mean	Mean	Validation
SEE	15.2846	14.9275	18.2064
Bias	0.8357	-0.4715	0.0887
C1	0.0150	0.0157	0.0157
C2	0.4000	0.4043	0.4043
C3	0.0080	0.0064	0.0064
C4	40.0000	32.3044	32.3044

Table B-225 Option 2 IRI model validation results

Table B-226 Option 2 IRI model validation hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.9603
Intercept	0.0000
Slope	0.0000

Figure B-500 IRI model validation – option 2

Figure B-501 Option 2 residual plots

Parameter	Global Model Mean	Local Model Mean	Local Model Validation
SEE	22.6132	17.5204	14.0299
Bias	-9.4328	-0.4048	-1.8670
C1	0.0150	0.0294	0.0294
C2	0.4000	0.1606	0.1606
C3	0.0080	0.0052	0.0052
C4	40.0000	24.0057	24.0057

Table B-227 Option 4 IRI model validation results

Table B-228 Option 4 IRI model validation hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.5750
Intercept	0.0362
Slope	0.0183

Figure B-502 IRI model validation – option 4

Figure B-503 Option 4 residual plots

B.3.5 Transverse cracking model

B.3.5.1 Option 1

Parameter	Global Model	Local Model	Local model validation
SEE	22.8853	12.6026	22.4378
Bias	-13.9244	0.3197	-8.9434
C1	1.0000	0.2612	0.2612
C2	-1.9800	-1.6662	-1.6662

Table B-229 Option 1 transverse cracking model validation

Table B-230: Option 1 hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.1358
Intercept	0.2466
Slope	0.0073

Figure B-504 Option 1 validation results

Figure B-505 Option 1 residual plots

Parameter	Global Model	Local Model	Local model validation
SEE	16.0455	8.9093	12.2402
Bias	-7.5017	0.2667	-4.2322
C1	1.0000	0.2311	0.2311
C2	-1.9800	-1.7733	-1.7733

 Table B-231 Option 2 transverse cracking model validation

Table B-232: Option 2 hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.1225
Intercept	0.6342
Slope	0.0000

Figure B-506 Option 2 validation results

B.3.5.3 Option 3

Parameter	Global Model	Local Model	Local model validation
SEE	14.0377	7.8001	13.7216
Bias	-5.9053	0.2924	-2.8180
C1	1.0000	0.2241	0.2241
C2	-1.9800	-1.8142	-1.8142

Table B-233 Option 3 transverse cracking model validation

Table B-234: Option 3 hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.2032
Intercept	0.2231
Slope	0.0000

Figure B-508 Option 3 validation results

Figure B-509 Option 3 residual plots

B.3.5.4 Option 4

Parameter	Global Model	Local Model	Local model validation
SEE	0.9947	0.7029	0.5744
Bias	-0.6707	-0.0251	0.0776
C1	1.0000	4.9113	4.9113
C2	-1.9800	-0.9666	-0.9666

 Table B-235 Option 4 transverse cracking model validation

Table B-236: Option 4 hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.5917
Intercept	0.0005
Slope	0.0002

Figure B-510 Option 4 validation results

Figure B-511 Option 4 residual plots

B.3.6 Rigid IRI model

B.3.6.1 Option 1

	Global	Local	Local
Parameter	Model	Model	Model
	Mean	Mean	Validation
SEE	17.4759	15.2504	12.4435
Bias	-11.4262	4.3926	-2.4041
C1	0.8203	0.6059	0.6059
C2	0.4417	11.9325	11.9325
C3	1.4920	1.4929	1.4929
C4	25.2400	25.2400	25.2400

Table B-237 Option 1 IRI model validation results

 Table B-238 Option 1 IRI model validation hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.3334
Intercept	0.0007
Slope	0.0003

Figure B-512 IRI model validation – option 1

Figure B-513 Option 1 residual plots

	Global	Local	Local
Parameter	Model	Model	Model
	Mean	Mean	Validation
SEE	16.3221	14.7545	14.4673
Bias	-10.5443	0.4799	7.5221
C1	0.8203	1.0704	1.0704
C2	0.4417	5.3282	5.3282
C3	1.4920	1.4929	1.4929
C4	25.2400	25.2400	25.2400

Table B-239 Option 2 IRI model validation results

Table B-240 Option 2 IRI model validation hypothesis test results

Figure B-514 IRI model validation – option 2

Figure B-515 Option 2 residual plots

	Global	Local	Local
Parameter	Model	Model	Model
	Mean	Mean	Validation
SEE	17.4463	14.2258	16.9590
Bias	-10.3821	2.0902	-5.4326
C1	0.8203	2.2229	1.2656
C2	0.4417	1.6685	3.4776
C3	1.4920	1.4929	1.4929
C4	25.2400	25.2400	50.8002

Table B-241 Option 3 IRI model validation results

Table B-242 Option 3 IRI model validation hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.2485
Intercept	0.0190
Slope	0.0285

Figure B-516 IRI model validation – option 3

Figure B-517 Option 3 residual plots

B.3.6.4 Option 4

	Global	Local	Local
Parameter	Model	Model	Model
	Mean	Mean	Validation
SEE	10.5483	7.2943	11.2862
Bias	-7.1270	0.2066	1.4563
C1	0.8203	0.3637	2.1420
C2	0.4417	2.2600	2.6282
C3	1.4920	1.4929	1.4929
C4	25.2400	25.2400	5.7454

Table B-243 Option 4 IRI model validation results

Table B-244 Option 4 IRI model validation hypothesis test results

Hypothesis test	<i>p</i> -value
Mean difference (paired <i>t</i> -test)	0.4266
Intercept	0.2262
Slope	0.2107

Figure B-518 IRI model validation – option 4

Figure B-519 Option 4 residual plots

B.4 Use of local calibration coefficients

B.4.1 Flexible

Figure B-520 Alligator cracking for Project 20046

Figure B-521 Longitudinal cracking for Project 20046

Figure B-522 Rutting for Project 20046

Figure B-523 Thermal cracking for Project 20046

Figure B-524 IRI for Project 20046

B.4.2 Rigid

Figure B-525 Transverse cracking for Project 45855

Figure B-526 Faulting for Project 45855

Figure B-527 IRI for Project 45855